Patents by Inventor Siva Yegnanarayanan

Siva Yegnanarayanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230378649
    Abstract: Described is a flexible thermally-drawn receive phased array antenna and antenna system and a process for making the same. The phased array antenna system includes a plurality of antenna elements and one or more low noise amplifiers (LNAs) encapsulated in a fiber such as flexible polyetherimide (PEI) fiber material. A DC bias for the LNAs and other components is provided by one or more electrically conducting wires disposed in proximity to the antenna elements and also encapsulated in the fiber. In embodiments, the antenna elements are provided as dipole antenna elements and the phased array antenna is provided as a flexible thermally-drawn linear dipole receive phased array antenna operable at UHF frequencies.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 23, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Alan J. FENN, Alexander STOLYAROV, Siva YEGNANARAYANAN, Lauren CANTLEY
  • Patent number: 11050214
    Abstract: In an ultrastable laser, using a large mode-volume optical resonator, which suppresses the resonator's fast thermal fluctuations, together with the stimulated Brillouin scattering (SBS) optical nonlinearity presents a powerful combination that enables the ability to lase with an ultra-narrow linewidth of 20 Hz. The laser's long-term temperature drift is compensated by using the narrow Brillouin line to sense minute changes in the resonator's temperature (e.g., changes of 85 nK). The precision of this temperature measurement enables the stabilization of resonators against environmental perturbations.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: June 29, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: William Loh, Paul William Juodawlkis, Siva Yegnanarayanan
  • Patent number: 11016360
    Abstract: The performance of an electro-optic modulator depends in part on the capacitance, the inductance, the electric field distribution, and the signal insertion loss of a microwave transmission line that modulates the refractive index of a waveguide via the electro-optic effect. Conventional electro-optic modulators are typically unable to improve one of these properties without negatively affecting other properties, resulting in lower performance. These shortcomings may be overcome, in part, by the inclusion of capacitive structures to decouple these properties. The capacitive structure may include a fang and/or a hook to tune the capacitance and the electric field distribution without appreciably changing the inductance or the signal insertion losses.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: May 25, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Siva Yegnanarayanan, Wayne Woods
  • Patent number: 10812118
    Abstract: In-band full-duplex (IBFD) wireless systems offer the ability to revolutionize frequency spectrum utilization for future networks. For IBFD systems to work, the self-interference (SI) generated by each wireless node should be sufficiently mitigated, which becomes more challenging as the bandwidth increases. RF cancellation enables this interference reduction but has been limited so far to narrowband operation or restricted to distinctive environments. Fortunately, a photonic-enabled RF canceller can provide broadband interference cancellation using photonic components in a wideband vector modulator architecture with tunable time-delay taps. An example of this canceller with 20 canceller taps provides 25 and 20 dB of cancellation over 500-MHz and 1-GHz instantaneous bandwidths, respectively, and is tunable between 0.5 and 5.5 GHz. This photonic-enabled RF canceller provides the wideband operation and high tap counts for successfully deploying future wireless systems with IBFD technology.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 20, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Kenneth E. Kolodziej, Bradley Perry, Siva Yegnanarayanan
  • Publication number: 20190341739
    Abstract: Ultrastable lasers serve as the backbone for advanced scientific experiments and enable atomic spectroscopy and laser interferometry at high levels of precision. But is not clear how to realize an ultrastable laser that is compact and portable for field use. An ultrastable laser source should be insensitive to both short- and long-term fluctuations in temperature, which ultimately broaden the laser linewidth and cause drift in the laser's center frequency. Fortunately, using a large mode-volume optical resonator, which suppresses the resonator's fast thermal fluctuations, together with the stimulated Brillouin scattering (SBS) optical nonlinearity presents a powerful combination that enables the ability to lase with an ultra-narrow linewidth of 20 Hz. The laser's long-term temperature drift is compensated by using the narrow Brillouin line to sense minute changes in the resonator's temperature (e.g., changes of 85 nK).
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: WILLIAM LOH, Paul William JUODAWLKIS, Siva YEGNANARAYANAN
  • Publication number: 20190173503
    Abstract: In-band full-duplex (IBFD) wireless systems offer the ability to revolutionize frequency spectrum utilization for future networks. For IBFD systems to work, the self-interference (SI) generated by each wireless node should be sufficiently mitigated, which becomes more challenging as the bandwidth increases. RF cancellation enables this interference reduction but has been limited so far to narrowband operation or restricted to distinctive environments. Fortunately, a photonic-enabled RF canceller can provide broadband interference cancellation using photonic components in a wideband vector modulator architecture with tunable time-delay taps. An example of this canceller with 20 canceller taps provides 25 and 20 dB of cancellation over 500-MHz and 1-GHz instantaneous bandwidths, respectively, and is tunable between 0.5 and 5.5 GHz. This photonic-enabled RF canceller provides the wideband operation and high tap counts for successfully deploying future wireless systems with IBFD technology.
    Type: Application
    Filed: November 16, 2018
    Publication date: June 6, 2019
    Inventors: Kenneth KOLODZIEJ, Bradley PERRY, Siva YEGNANARAYANAN
  • Patent number: 9971226
    Abstract: An optoelectronic filter having at least one input and an output includes a modulator circuit having at least first and second inputs with a first one of the modulator circuit inputs adapted to couple to a respective one of the at least one input of the optoelectronic filter. The modulator circuit receives at least a first radio frequency (RF) signal having a first power level and a second RF signal having a second, different power level at the first one of the modulator circuit inputs and in response thereto generates a modulated signal at an output thereof. The first RF signal is suppressed relative to the second RF signal in the modulated signal. The optoelectronic filter additionally includes a light source adapted to couple to a second one of the modulator circuit inputs. A corresponding method is also provided.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 15, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Paul W. Juodawlkis, William Loh, Rajeev J Ram, Siva Yegnanarayanan
  • Publication number: 20160170285
    Abstract: An optoelectronic filter having at least one input and an output includes a modulator circuit having at least first and second inputs with a first one of the modulator circuit inputs adapted to couple to a respective one of the at least one input of the optoelectronic filter. The modulator circuit receives at least a first radio frequency (RF) signal having a first power level and a second RF signal having a second, different power level at the first one of the modulator circuit inputs and in response thereto generates a modulated signal at an output thereof. The first RF signal is suppressed relative to the second RF signal in the modulated signal. The optoelectronic filter additionally includes a light source adapted to couple to a second one of the modulator circuit inputs. A corresponding method is also provided.
    Type: Application
    Filed: July 31, 2014
    Publication date: June 16, 2016
    Inventors: Paul W. Juodawlkis, William Loh, Rajeev J Ram, Siva Yegnanarayanan
  • Patent number: 6769816
    Abstract: An integrated zig-zag transceiver module for multiplexing and demultiplexing several wavelengths achieves a high level of integration by combining several electronic and optical elements into TO headers with lids. A photodetector, a transimpedance amplifier (TIA), a lens, and a thin-film filter are integrated into a single TO can, with the filter and lens being designed for off-axis illumination and focusing. A VCSEL, a lens, and a thin-film filter are integrated into a single TO can, with the filter and lens being designed for off-axis beam steering and collimation.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: August 3, 2004
    Assignee: Intel Corporation
    Inventors: Dale L. Capewell, Sam Beizai, Siva Yegnanarayanan
  • Publication number: 20040042736
    Abstract: An integrated zig-zag transceiver module for multiplexing and demultiplexing several wavelengths achieves a high level of integration by combining several electronic and optical elements into TO headers with lids. A photodetector, a transimpedance amplifier (TIA), a lens, and a thin-film filter are integrated into a single TO can, with the filter and lens being designed for off-axis illumination and focusing. A VCSEL, a lens, and a thin-film filter are integrated into a single TO can, with the filter and lens being designed for off-axis beam steering and collimation.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 4, 2004
    Applicant: Intel Corporation
    Inventors: Dale L. Capewell, Sam Beizai, Siva Yegnanarayanan