Patents by Inventor Siwei Huang

Siwei Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094936
    Abstract: A storage system includes multiple storage nodes. Each storage node includes a first storage device of a first type and a second storage device of a second type, and a performance level of the first storage device is higher than the second storage device. The globe cache includes a first tier comprising the first storage device in each storage node, and a second tier comprising the second storage device in each storage node. The first tier is for storing data with a high access frequency, and the second tier is for storing data with a low access frequency. The management node monitors an access frequency of target data stored in the first tier. When the access frequency of the target data is lower than a threshold, the management node instructs the first storage node to migrate the target data from the first tier to the second tier.
    Type: Application
    Filed: December 3, 2023
    Publication date: March 21, 2024
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Wenlin Cui, Keji Huang, Peng Zhang, Siwei Luo
  • Patent number: 11054219
    Abstract: A wearable programming unit (WPU) (1 10, 1 10a-1 10b) for assisting a user deploy air burst munition (ABM, 10) from a rifle (20) in an intuitive manner is described. The WPU has a ballistic processor (112), wireless communication channels (120), a vibrator (130), a display (130), a mode button (150) and up/down select buttons (160, 161). After an ABM is selected and loaded into the rifle, and a deployment distance entered in the WPU, the ballistic processor calculates and outputs a time of burst T and barrel angle alpha. The barrel angle alpha is received by a sighting unit (104) and appears as a target marker. Once the rifle is tilted and/or moved so that a centre of the sighting unit coincides with the target marker, the WPU vibrates as a signal to the user to trigger the rifle.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: July 6, 2021
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Thomas Yong Lim Ang, Soo Chew Sie, Siwei Huang
  • Publication number: 20210156648
    Abstract: A wearable programming unit (WPU) (1 10, 1 10a-1 10b) for assisting a user deploy air burst munition (ABM, 10) from a rifle (20) in an intuitive manner Is described. The WPU has a ballistic processor (112), wireless communication channels (120), a vibrator (130), a display (130), a mode button (150) and up/down select buttons (160, 161). After an ABM is selected and loaded into the rifle, and a deployment distance entered in the WPU, the ballistic processor calculates and outputs a time of burst T and barrel angle alpha. The barrel angle alpha is received by a sighting unit (104) and appears as a target marker. Once the rifle is tilted and/or moved so that a centre of the sighting unit coincides with the target marker, the WPU vibrates as a signal to the user to trigger the rifle.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 27, 2021
    Inventors: Cheng Hok AW, Thomas Yong Lim ANG, Soo Chew SIE, Siwei HUANG
  • Patent number: 9518809
    Abstract: The present invention describes an electronic fuze operable to complement a mechanical point impact fuze. The electronic fuze includes a voltage generator circuit, micro-controller, a piezo-electric sensor, a firing circuit and a safety lockout circuit. When a projectile strikes a target at an optimum angle, the mechanical point impact fuze is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor is operable to trigger the firing circuit. The safety lockout circuit ensures the firing circuit is operative only after a predetermined delay time when an n-channel FET is turned OFF. The micro-controller also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: December 13, 2016
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Publication number: 20150377599
    Abstract: The present invention describes an electronic fuze operable to complement a mechanical point impact fuze. The electronic fuze includes a voltage generator circuit, micro-controller, a piezo-electric sensor, a firing circuit and a safety lockout circuit. When a projectile strikes a target at an optimum angle, the mechanical point impact fuze is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor is operable to trigger the firing circuit. The safety lockout circuit ensures the firing circuit is operative only after a predetermined delay time when an n-channel FET is turned OFF. The micro-controller also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Application
    Filed: September 3, 2015
    Publication date: December 31, 2015
    Inventors: Cheng Hok AW, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Patent number: 9163916
    Abstract: The present invention describes an electronic fuze (200) operable to complement a mechanical point impact fuze (101). The electronic fuze (200) includes a voltage generator circuit (210), micro-controller (220), a piezo-electric sensor (262), a firing circuit (280) and a safety lockout circuit (290). When a projectile (50) strikes a target at an optimum angle, the mechanical point impact fuze (101) is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor (262) is operable to trigger the firing circuit (280). The safety lockout circuit (290) ensures the firing circuit (280) is operative only after a predetermined delay time when an n-channel FET (292) is turned OFF. The micro-controller (220) also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: October 20, 2015
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Publication number: 20120291650
    Abstract: The present invention describes an electronic fuze (200) operable to complement a mechanical point impact fuze (101). The electronic fuze (200) includes a voltage generator circuit (210), micro-controller (220), a piezo-electric sensor (262), a firing circuit (280) and a safety lockout circuit (290). When a projectile (50) strikes a target at an optimum angle, the mechanical point impact fuze (101) is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor (262) is operable to trigger the firing circuit (280). The safety lockout circuit (290) ensures the firing circuit (280) is operative only after a predetermined delay time when an n-channel FET (292) is turned OFF. The micro-controller (220) also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Application
    Filed: March 22, 2012
    Publication date: November 22, 2012
    Applicant: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie