Patents by Inventor Skip Liu

Skip Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741697
    Abstract: An electronic device can include a nonvolatile memory cell, wherein the nonvolatile memory cell can include a substrate, an access transistor, a read transistor, and an antifuse component. Each of the access and read transistors can include source/drain regions at least partly within the substrate, a gate dielectric layer overlying the substrate, and a gate electrode overlying the gate dielectric layer. An antifuse component can include a first electrode lying at least partly within the substrate, an antifuse dielectric layer overlying the substrate, and a second electrode overlying the antifuse dielectric layer. The second electrode of the antifuse component can be coupled to one of the source/drain regions of the access transistor and to the gate electrode of the read transistor. In an embodiment, the antifuse component can be in the form of a transistor structure. The electronic device can be formed using a single polysilicon process.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: June 3, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Moshe Agam, Thierry Coffi Herve Yao, Shizen Skip Liu
  • Patent number: 8724364
    Abstract: An electronic device can include a nonvolatile memory cell, wherein the nonvolatile memory cell can include an antifuse component, a switch, and a read transistor having a control electrode. Within the nonvolatile memory cell, the switch can be coupled to the antifuse component, and the control electrode of the read transistor can be coupled to the antifuse component. The nonvolatile memory cell can be programmed by flowing current through the antifuse component and the switch and bypassing the current away the read transistor. Thus, programming can be performed without flowing current through the read transistor decreasing the likelihood of the read transistor sustaining damage during programming. Further, the antifuse component may not be connected in series with the current electrodes of the read transistor, and thus, during read operations, read current differences between programmed and unprogrammed nonvolatile memory cells can be more readily determined.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 13, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Moshe Agam, Thierry Coffi Herve Yao, Shizen Skip Liu
  • Publication number: 20130063999
    Abstract: An electronic device can include a nonvolatile memory cell, wherein the nonvolatile memory cell can include an antifuse component, a switch, and a read transistor having a control electrode. Within the nonvolatile memory cell, the switch can be coupled to the antifuse component, and the control electrode of the read transistor can be coupled to the antifuse component. The nonvolatile memory cell can be programmed by flowing current through the antifuse component and the switch and bypassing the current away the read transistor. Thus, programming can be performed without flowing current through the read transistor decreasing the likelihood of the read transistor sustaining damage during programming. Further, the antifuse component may not be connected in series with the current electrodes of the read transistor, and thus, during read operations, read current differences between programmed and unprogrammed nonvolatile memory cells can be more readily determined.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Inventors: Moshe Agam, Thierry Coffi Herve Yao, Shizen Skip Liu
  • Publication number: 20130062703
    Abstract: An electronic device can include a nonvolatile memory cell, wherein the nonvolatile memory cell can include a substrate, an access transistor, a read transistor, and an antifuse component. Each of the access and read transistors can include source/drain regions at least partly within the substrate, a gate dielectric layer overlying the substrate, and a gate electrode overlying the gate dielectric layer. An antifuse component can include a first electrode lying at least partly within the substrate, an antifuse dielectric layer overlying the substrate, and a second electrode overlying the antifuse dielectric layer. The second electrode of the antifuse component can be coupled to one of the source/drain regions of the access transistor and to the gate electrode of the read transistor. In an embodiment, the antifuse component can be in the form of a transistor structure. The electronic device can be formed using a single polysilicon process.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Inventors: Moshe Agam, Thierry Coffi Herve Yao, Shizen Skip Liu
  • Publication number: 20070011363
    Abstract: Techniques and circuitry for transferring data from memory arrays of a memory device to output pins via a FIFO structure are provided. Input and output stages of the FIFO structure may be operated independently, allowing data to be loaded into the FIFO structure at a first frequency and unloaded from the FIFO structure at a second frequency.
    Type: Application
    Filed: June 28, 2005
    Publication date: January 11, 2007
    Inventors: Khaled Fekih-Romdhane, Skip Liu, Peter Chlumecky
  • Publication number: 20060171233
    Abstract: Techniques and circuitry that support switching operations required to exchange data between memory arrays and external data pads are provided. In a write path, such switching operations may include latching in and assembling a number of bits sequentially received over a single data pad, reordering those bits based on a type of access mode (e.g., interleaved or sequential), and performing scrambling operations based on chip organization (e.g., x4, x8, or x16) a bank location being accessed. Similar operations may be performed (in reverse order) in a read path, to assemble data to be read out of a device.
    Type: Application
    Filed: January 18, 2005
    Publication date: August 3, 2006
    Inventors: Khaled Fekih-Romdhane, Skip Liu
  • Publication number: 20060171234
    Abstract: Techniques and circuitry that support switching operations required to exchange data between memory arrays and external data pads are provided. In a write path, such switching operations may include latching in and assembling a number of bits sequentially received over a single data pad, reordering those bits based on a type of access mode (e.g., interleaved or sequential), and performing scrambling operations based on chip organization (e.g., ×4, ×8, or ×16) a bank location being accessed. Similar operations may be performed (in reverse order) in a read path, to assemble data to be read out of a device.
    Type: Application
    Filed: January 18, 2005
    Publication date: August 3, 2006
    Inventors: Skip Liu, Khaled Fekih-Romdhane
  • Publication number: 20060161743
    Abstract: Techniques and circuitry that support switching operations required to exchange data between memory arrays and external data pads are provided. In a write path, such switching operations may include latching in and assembling a number of bits sequentially received over a single data pad, reordering those bits based on a type of access mode (e.g., interleaved or sequential), and performing scrambling operations based on chip organization (e.g., ×4, ×8, or ×16) a bank location being accessed. Similar operations may be performed (in reverse order) in a read path, to assemble data to be read out of a device.
    Type: Application
    Filed: January 18, 2005
    Publication date: July 20, 2006
    Inventors: Khaled Fekih-Romdhane, Skip Liu