Patents by Inventor Slavik Kasztelan

Slavik Kasztelan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020033355
    Abstract: A catalyst comprising 0.1-99.7% by weight of at least one alumina matrix; 0.1-80% by weight of at least one globally non dealuminated Y zeolite with a lattice parameter of more than 2.438 nm, a global SiO2/Al2O3 mole ratio of less than 8, and a framework SiO2/Al2O3 mole ratio of less than 21 and more than the global SiO2/Al2O3 mole ratio; 0.1-30% by weight of at least one group VIII metal and/or 1-40% by weight of at least one group VIB metal (% oxide); 0.1-20% by weight of at least one promoter element selected from the group formed by boron and silicon (% oxide); 0-20% by weight of at least one group VIIA element; 0-20% by weight of phosphorous (% oxide); 0.1-20% by weight of at least one group VIIB element, useful for hydrocracking processes, especially at low pressures of 7.5 to 11 MPa.
    Type: Application
    Filed: October 1, 2001
    Publication date: March 21, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Samuel Mignard, Nathalie George-Marchal, Slavik Kasztelan
  • Publication number: 20020027094
    Abstract: The invention provides a process for hydrocracking hydrocarbon-containing petroleum feeds in the presence of a catalyst comprising a support containing at least one matrix, and at least one zeolite selected from the group, formed by NU-85, NU-86 and NU-87 zeolites.
    Type: Application
    Filed: September 6, 2001
    Publication date: March 7, 2002
    Inventors: Eric Benazzi, Nathalie George-Marchal, Slavik Kasztelan
  • Publication number: 20020016253
    Abstract: A catalyst comprising 0.1-99.7% by weight of at least one alumina matrix; 0.1-80% by weight of at least one globally non dealuminated Y zeolite with a lattice parameter of more than 2.438 nm, a global SiO2/Al2O3 mole ratio of less than 8, and a framework SiO2/Al2O3 mole ratio of less than 21 and more than the global SiO2/Al2O3 mole ratio; 0.1-30% by weight of at least one group VIII metal and/or 1-40% by weight of at least one group VIB metal (% oxide); 0.1-20% by weight of at least one promoter element selected from the group formed by boron and silicon (% oxide); 0-20% by weight of at least one group VIIA element; 0-20% by weight of phosphorous (% oxide); 0.1-20% by weight of at least one group VIIB element, useful for hydrocracking processes, especially at low pressures of 7.5 to 11 MPa.
    Type: Application
    Filed: May 5, 1999
    Publication date: February 7, 2002
    Inventors: SAMUEL MIGNARD, NATHALIE GEORGE-MARCHAL, SLAVIK KASZTELAN
  • Patent number: 6344135
    Abstract: The invention concerns a hydrocracking process using a catalyst comprising at least one matrix, an IM-5 zeolite, at least one metal selected from the group formed by metals from group VIB and group VIII of the periodic table, optionally at least one element selected from the group formed by phosphorous, boron and silicon, and optionally at least one group VIIA and/or at least one group VIIB and/or at least one group VB element (in particular niobium). The invention also concerns a catalyst containing at least one matrix, an IM-5 zeolite, at least one metal from groups VIII and/or VIB and at least one promoter element which is boron and/or silicon. The catalyst can also contain at least one group VIIA element and/or at least one group VIIB element and/or at least one group VB element.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: February 5, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Slavik Kasztelan
  • Patent number: 6332976
    Abstract: The invention concerns an alumina based catalyst containing, expressed as the oxide content by weight, 2-10% by weight of cobalt oxide CoO, 10-30% by weight of molybdenum oxide MoO3 and 4-10% of phosphorous oxide P2O5, with a BET surface area in the range 100-300 m2/g, a crushing strength CSH of more than 1.4 MPa, and an average pore diameter in the range 8-11 nm, the pore volume of pores with diameter of more than 14 nm being less than 0.08 ml/g, or less than 22% of total pore volume, the volume of pores with a diameter of less than 8 nm being at most 0.05 ml/g, or less than 10% of total pore volume, the volume of pores with diameter less than 10 nm being in the range of 20%-70%, the volume of pores with diameter between 10 nm and 13 nm being in the range of 20%-60%, and the volume of pores with a diameter which is in the range 8 to 14 nm being in the range 0.20 ml/g to 0.8 ml/g. The invention also concerns a hydrotreatment process using the catalyst, in particular hydrodesulphuration.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: December 25, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Nathalie George-Marchal, Virginie Harle, Slavik Kasztelan
  • Patent number: 6329314
    Abstract: A process for activation of a hydroconversion catalyst, whereby said catalyst contains at least one metal or element of group VIII, at least one acid element and optionally at least one metal or element of group VI according to which a light petroleum fraction, at least one thionic compound and at least one nitrogenous compound are injected in said catalyst. This process is carried out such that the QS sulfur amount that is injected before the temperature of the catalyst reaches 250° C. is at least equal to half the QSO sulfur amount that is necessary for complete sulfurization of the catalyst.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: December 11, 2001
    Assignee: Institu Francais du Petrole
    Inventors: Samuel Mignard, Virginie Harle, Slavik Kasztelan, Nathalie Marchal-George
  • Patent number: 6316382
    Abstract: The invention concerns a process for sulphurizing supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB, group VB and group VIB, said process being characterized in that said catalyst is pre-reduced with at least one reducing gas other than hydrogen before sulphurizing said catalyst. The invention also concerns the sulfide catalysts obtained by the process of the present invention as well as the use of the sulfide catalyst in a process for hydrocracking and hydrotreatment of hydrocarbon-containing feeds.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 13, 2001
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6309537
    Abstract: The present invention concerns the use of a catalyst comprising an extruded essentially alumina-based support, constituted by a plurality of juxtaposed agglomerates and partially in the form of packs of flakes and partially in the form of needles, and optionally comprising at least one catalytic metal or a compound of a catalytic metal from group VIB and/or at least one catalytic metal or compound of a catalytic metal from group VIII, further comprising at least one dopant selected from the group formed by boron, phosphorous, silicon (or a silica different from that which can be found in the support) and halogens, in an ebullating bed process and for hydrorefining and hydroconverting hydrocarbon feeds.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: October 30, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Slavik Kasztelan, Stéphane Kressmann, Frédéric Morel
  • Publication number: 20010023840
    Abstract: The invention relates to a process for conversion of hydrocarbons in the presence of at least one catalyst with controlled acidity, characterized in that the level of activity of said catalyst in isomerization of the cyclohexane is less than 0.10 and/or in that the ratio of toluene hydrogenation activity to the cyclohexane isomerization activity is greater than 10. The invention relates to a process of conversion of hydrocarbons in the presence of at least one catalyst with controlled acidity, characterized in that the level of activity of said catalyst in isomerization of the cyclohexane is less than 0.10 and/or in that the ratio of toluene hydrogenation activity to the cyclohexane isomerization activity is greater than 10.
    Type: Application
    Filed: February 23, 2001
    Publication date: September 27, 2001
    Inventors: Virginie Harle, Stephane Kressmann, Isabelle Guibard, Slavik Kasztelan, Frederic Morel
  • Patent number: 6251261
    Abstract: The invention relates to a hydrocracking catalyst that comprises at least one oxide-type amorphous or poorly crystallized matrix, at least one element of group VB, preferably niobium, and at least one clay that is selected from the group that is formed by the 2:1 dioctahedral phyllosilicates and the 2:1 trioctahedral phyllosilicates, optionally at least one element that is selected from among the elements of group VIB and group VIII, optionally at least one element that is selected from the group that is formed by P, B, Si, and optionally at least one element of group VIIA. The invention also relates to the use of this catalyst in hydrocracking of feedstocks that contain hydrocarbon.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 26, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6242378
    Abstract: The invention concerns a process for sulphurising supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, said process being characterized in that said catalyst is sulphurised using a mixture containing at least one source of elemental sulphur and at least one source of carbon in an autogenous or inert atmosphere. Also disclosed are sulphurised catalysts obtained by the process of the invention, the use of the catalysts in processes for hydrocracking and hydrotreatment of hydrocarbon-containing feeds.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 5, 2001
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6235670
    Abstract: The invention concerns a catalyst comprising at least one matrix, at least one dioctahedral 2:1 phyllosilicate which is optionally synthesized in a fluorine-containing medium and optionally bridged, at least one metal selected from elements from group VIB and/or group VIII of the periodic table, boron and/or silicon, optionally phosphorous, optionally at least one group VIIA element, and optionally at least one group VIIB element. The invention also concerns the use of the catalyst for hydrocracking hydrocarbon-containing feeds.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: May 22, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Slavik Kasztelan, Nathalie George-Marchal
  • Patent number: 6235960
    Abstract: A process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which the feed to be treated is brought into contact with a catalyst comprising at least one zeolite with structure type MTT, TON or FER or any possible combination of these three, at least one hydro-dehydrogenating element selected from elements from group VIB and group VIII of the periodic table, at least one deposited promoter element (boron, silicon, phosphorous), optionally at least one group VIIA element, optionally at least one group VIIB element, at a temperature in the range 170° C. to 500° C., a pressure in the range 1 to 250 bars and at an hourly space velocity in the range 0.05 to 100 h−1, in the presence of hydrogen in an amount of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils, and other feeds requiring a reduction in pour point.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: May 22, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Slavik Kasztelan, Nathalie George-Marchal
  • Patent number: 6231750
    Abstract: The invention provides a hydrocracking catalyst comprising at least one mineral matrix, at least one beta zeolite, at least one group VB element or at least one mixed sulphide phase comprising sulphur, optionally at least one group VIB or group VIII element, optionally at least one element selected from the group formed by silicon, boron or phosphorous, and optionally at least one group VIIA element.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 15, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6217750
    Abstract: The invention concerns a process for purifying naphthalene. The process comprises selective hydrotreatment corresponding to hydrodesulphuration and/or hydrodenitrogenation and/or hydrodehydroxylation and/or hydrogenation of olefins while limiting naphthalene hydrogenation. The catalyst used comprises a matrix, at least one group VIII metal, at least one group VI metal and optionally phosphorous. It has a specific surface area of at most 220 m2/g, a pore volume of 0.35-0.7 ml/g and an average pore diameter of over 10 nm. The process is carried out at 150-325° C. at a pressure of 0.1-0.9 MPa, with an HSV of 0.05-10 h−1, and a H2/naphthalene ratio of 0.1-1.3 mole/mole. The effluent, freed of H2S, NH3 and water, undergoes a naphthalene separation process by distillation or, as is preferable, by crystallisation. Further, recycling the separated tetralin to the hydrotreatment step can substantially increase the naphthalene yield.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: April 17, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Guenaël Drouglazet, Slavik Kasztelan, Jean Cosyns, Michel Bloch, René Genin
  • Patent number: 6207870
    Abstract: The invention provides a catalyst including a support, at least one noble metal from group VIII of the periodic table, silicon as a dopant, optionally boron, optionally at least one group VIB element, optionally phosphorous and optionally at least one halogen. The invention also provides a particular preparation of the catalyst. The invention also concerns the use of this catalyst in the hydrotreatment of hydrocarbon-containing feeds, more particularly its use for hydrogenating aromatic compounds in a gas oil cut.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: March 27, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Samuel Mignard, Virginie Harle, Nathalie Marchal-George
  • Publication number: 20010000006
    Abstract: Hydrocarbon feeds are subjected to hydrocracking in the presence of a hydrocracking catalyst comprising at least one amorphous or poorly crystallized matrix of the oxide type, at least one element of group VB, preferably niobium, and at least one zeolite Y not globally dealuminized, at least one promoter element chosen from the group consisting of boron, phosphorus and silicon, optionally at least one element chosen from the elements of group VIB and group VIII, optionally at least one element of group VIIA.
    Type: Application
    Filed: November 29, 2000
    Publication date: March 15, 2001
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6187174
    Abstract: A process for converting a heavy hydrocarbon fraction comprises a step a) for treating a hydrocarbon feed in a hydroconversion section in the presence of hydrogen, the section comprising at least one three-phase reactor containing at least one ebullated bed of hydroconversion catalyst operating in riser mode for liquid and for gas, said reactor comprising at least one means for extracting used catalyst from said reactor and at least one means for adding fresh catalyst to said reactor, b) a step for treating fresh catalyst and conditioning the catalyst using a process leading to a gain in the activity of the catalyst during treatment of the feed in said conversion reactor. This process for conditioning the catalyst before adding it to the reactor can comprise a step for impregnating the catalyst with a chemical substance, or a complete sulphurisation step, or a step for adding an additive mixed with the fresh catalyst which is added.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Stéphane Kressmann, Virginie Harle, Slavik Kasztelan
  • Patent number: 6187708
    Abstract: The invention relates to a process for the sulfurization of hydroconversion catalysts, whereby said catalyst contains at least one element of group VIII of the periodic table and optionally an element of group VI, whereby said metal is present in the oxide state. Said process comprises at least one stage that is carried out in a hydrotreatment zone in the presence of at least one thionic compound and at least one nitrogenous compound. This process is carried out in such a way that before the final sulfurization temperature is reached, at least 130% of the stoichiometric amount of sulfur that is necessary for complete sulfurization of the catalyst is injected in said catalyst.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Virginie Harle, Slavik Kasztelan, Nathalie Marchal-George
  • Patent number: 6174429
    Abstract: The invention relates to a hydrocracking catalyst that contains at least one metal of group VIB, and/or at least one metal of group VIII of the periodic table, an alumina matrix, phosphorus, optionally at least one element from group VIIA (fluorine), and a zeolite Y that is not fully dealuminificated, with a crystalline parameter that is greater than 2,438 nm, an overall SiO2/Al2O3 ratio that is less than 8, and a framework SiO2/Al2O3 ratio that is less than 21 and greater than the overall SiO2/Al2O3 ratio. The invention also relates to a process for hydrocracking with this catalyst, in particular at low pressure of 7.5 to 11 MPa.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: January 16, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Nathalie George-Marchal, Samuel Mignard, Slavik Kasztelan