Patents by Inventor Sombuddha Chakraborty

Sombuddha Chakraborty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072675
    Abstract: A system includes a control circuit having a voltage input and a control circuit output. The control circuit produces a control voltage at the control circuit output having a magnitude inversely related to a magnitude of an input voltage at the input voltage input. A VCO has a VCO control input and a VCO clock output. The VCO control input is coupled to the control circuit output. The VCO produces a VCO clock on the VCO clock output having a frequency that is a function of the control voltage. A protection circuit has a first clock input, a second clock input, and a protection circuit output. The second clock input is coupled to the VCO clock output. The protection circuit generates a protection circuit output signal at the protection circuit output based on a difference in frequency between a clock signal at the first clock input and the VCO clock.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Jose V. FORMENTI, Robert MARTINEZ, Michael CORRY, Sombuddha CHAKRABORTY
  • Publication number: 20230387817
    Abstract: A voltage converter includes a switch network, a rectifier, and a transformer coupled between the switch network and the rectifier. The voltage converter includes an adaptive ON-time generation circuit having a control input and a control output, the control input. The adaptive ON-time generation circuit is configured to receive a WAKE signal to turn ON the switch network, generate a signal indicative of an OFF time of the switch network, and determine an ON time for the switch network based on the signal indicative of the OFF time.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 30, 2023
    Inventors: Sombuddha CHAKRABORTY, Taisuke KAZAMA, Nicola BERTONI, Dongbin HOU, Raul BLECIC, Stefan HERZER
  • Publication number: 20230318442
    Abstract: A switching converter controller includes a synchronization circuit having a first synchronization circuit input, a second synchronization circuit input, a first synchronization circuit output, and a second synchronization circuit output. The synchronization circuit is configured to: receive an early warning signal at the first synchronization circuit input; receive a load detection signal at the second synchronization circuit input; provide a first control signal at the first synchronization circuit output responsive to the early warning signal; and provide a second control signal at the second synchronization circuit output responsive to the load detection signal. The switching converter controller also includes a driver circuit configured to adjust an idle switch drive signal at a first driver circuit output and a power switch drive signal at a second driver circuit output responsive to the first control signal and the second control signal.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Kevin SCOONES, Sombuddha CHAKRABORTY, Pourya ASSEM, Reza SHARIFI
  • Publication number: 20230318455
    Abstract: A transient auxiliary converter includes: a transient auxiliary converter terminal; an inductor having a first side and a second side, the first side of the inductor coupled to the transient auxiliary converter terminal; a capacitor having a first electrode and a second electrode, the second electrode of the capacitor being coupled to ground; a first switch between the second side of the inductor and the first electrode of the capacitor; and a second switch between the second side of the inductor and ground. The first and second switches are operated in accordance with a charge mode and a transient response mode for the transient auxiliary converter. The charge mode builds up charge on the capacitor from charge at the transient auxiliary converter terminal. The transient response mode releases charge on the capacitor to the transient auxiliary converter terminal.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Sombuddha CHAKRABORTY, Kevin SCOONES, Pourya ASSEM
  • Patent number: 11575314
    Abstract: A controller for a boost power factor correction (PFC) converter. The controller is configured to operate the boost PFC converter in multiple operating modes, including a continuous conduction mode (CCM), a transition mode (TM), and a hybrid mode in which the controller operates the converter in both CCM and TM within a same line cycle. An example controller includes a current control loop and a mode transition circuit. The current control loop is configured to compute an inductor current for each of first and second operation modes, based on a current sample taken, for example, during a boost synchronous rectifier conduction period of the converter. The mode transition circuit includes digital logic circuitry and is configured to generate a pulse indicating that one, two or all three of: zero-voltage switching (ZVS) has been achieved; the synchronous rectifier conduction period is active; and/or one of TM or hybrid mode is active.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: February 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Saad Pervaiz, Sombuddha Chakraborty, Philomena Brady, Laszlo Balogh
  • Publication number: 20230031749
    Abstract: A method includes receiving a first indication of an inductor current provided by a voltage converter. The method also includes, responsive to a ratio of a rate of change of the first indication to a rate of change of a compensation ramp being greater than a threshold value, providing a second indication to the ramp generator. The compensation ramp is provided by a ramp generator to control the voltage converter. The second indication is configured to cause the ramp generator to increase an absolute value of the rate of change of the compensation ramp. The method also includes, responsive to the ratio being less than the threshold value, providing a third indication to the ramp generator. The third indication is configured to cause the ramp generator to decrease the absolute value of the rate of change of the compensation ramp.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Sombuddha CHAKRABORTY, Raveesh MAGOD RAMAKRISHNA
  • Publication number: 20220393574
    Abstract: A controller for a boost power factor correction (PFC) converter. The controller is configured to operate the boost PFC converter in multiple operating modes, including a continuous conduction mode (CCM), a transition mode (TM), and a hybrid mode in which the controller operates the converter in both CCM and TM within a same line cycle. An example controller includes a current control loop and a mode transition circuit. The current control loop is configured to compute an inductor current for each of first and second operation modes, based on a current sample taken, for example, during a boost synchronous rectifier conduction period of the converter. The mode transition circuit includes digital logic circuitry and is configured to generate a pulse indicating that one, two or all three of: zero-voltage switching (ZVS) has been achieved; the synchronous rectifier conduction period is active; and/or one of TM or hybrid mode is active.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 8, 2022
    Inventors: Saad Pervaiz, Sombuddha Chakraborty, Philomena Brady, Laszlo Balogh
  • Patent number: 11368089
    Abstract: Described systems, methods, and circuitries use an interleaved multi-level converter to convert an input signal received at an input node into an output signal at an output node. In one example, a power conversion system includes a first multi-level switching circuit, a second multi-level switching circuit, and a control circuit. The first multi-level switching circuit and the second multi-level switching circuit are coupled to a switching node, the input node, and a reference node. The control circuit is configured to generate, based on the output signal, switching control signals as pulse width modulated signals having a duty cycle to control the output signal and provide the switching control signals to the first multi-level switching circuit and the second multi-level switching circuit.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: June 21, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sombuddha Chakraborty, Hakan Oner, Yogesh Kumar Ramadass
  • Patent number: 11362587
    Abstract: In described examples of methods and control circuitry to control a multi-level power conversion system, the control circuitry generates PWM signals having a duty cycle to control an output signal. The duty cycle is adjustable in different switching cycles. States of the system's switches are adjustable in one or more intervals within the switching cycles. In response to a voltage across a capacitor of the system being outside a non-zero voltage range, the control circuitry adjusts states of the switches in two intervals to discharge or charge the capacitor in a given switching cycle.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 14, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Orlando Lazaro, Kevin Scoones, Alvaro Aguilar, Jeffrey Anthony Morroni, Sombuddha Chakraborty
  • Publication number: 20210375537
    Abstract: A device includes a first inductor and a second inductor reversely coupled with the first inductor. The first and second inductors have overlapping windings. The device also includes a housing for the first and second inductor. The housing is filled with a magnetic molding compound.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Inventors: Dongbin Hou, Sombuddha Chakraborty, Kenji Kawano, Jeffrey Morroni, Yuki Sato
  • Publication number: 20210375540
    Abstract: A laminate embedded core and coil structure comprises a magnetic core embedded in a laminate structure that includes two types of laminates. A first laminate embeds the coils of the structure and a second laminate fills space between the magnetic core and the first laminate, as well as space below the magnetic core and lower surface of the first laminate. The first and second laminates form a laminate structure that protects and improves isolation of the magnetic components. Solder resist encloses the laminate structure, magnetic core and coils. The laminate embedded core and coil structure may be assembled on a transformer leadframe of various types using non-conductive paste.
    Type: Application
    Filed: April 26, 2021
    Publication date: December 2, 2021
    Inventors: Yuki Sato, Kenji Otake, Zhemin Zhang, Byron Lovell Williams, Dongbin Hou, Sombuddha Chakraborty
  • Publication number: 20210313891
    Abstract: Described systems, methods, and circuitries use an interleaved multi-level converter to convert an input signal received at an input node into an output signal at an output node. In one example, a power conversion system includes a first multi-level switching circuit, a second multi-level switching circuit, and a control circuit. The first multi-level switching circuit and the second multi-level switching circuit are coupled to a switching node, the input node, and a reference node. The control circuit is configured to generate, based on the output signal, switching control signals as pulse width modulated signals having a duty cycle to control the output signal and provide the switching control signals to the first multi-level switching circuit and the second multi-level switching circuit.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 7, 2021
    Inventors: Sombuddha Chakraborty, Hakan Oner, Yogesh Kumar Ramadass
  • Patent number: 11094455
    Abstract: A device includes a first inductor and a second inductor reversely coupled with the first inductor, wherein the first and second inductors have overlapping windings. The device also includes a housing for the first and second inductor, wherein the housing is filled with a magnetic molding compound.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 17, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dongbin Hou, Sombuddha Chakraborty, Kenji Kawano, Jeffrey Morroni, Yuki Sato
  • Patent number: 11011978
    Abstract: An apparatus includes: a switched capacitor (SC) converter to generate a first voltage based on a voltage source; and a direct current-to-direct current (DC-DC) converter to generate a second voltage based on the voltage source of the apparatus. A difference between the first voltage and the second voltage corresponds to an output voltage.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: May 18, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Timothy McRae, Aleksandar Prodic, Sombuddha Chakraborty, Alvaro Aguilar, William James McIntyre
  • Patent number: 10833585
    Abstract: Described herein is a technology for implementing a scalable SCIB regulator for high conversion step down application. Particularly, the SCIB is configured to include stacked input switch circuits with parallel-connected output switch circuits. The input switch circuits are stacked with or without DC shift switch circuits in between. Furthermore, the input voltage is stepped down to a biasing voltage by input switch circuits and then is regulated to one or more output voltages having one or more independent and predetermined values by output switch circuits. The input switch circuits, output switch circuits and DC shift switch circuits can be modified for scalable power capability and ease of control and manufacturing.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 10, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yichao Tang, Sombuddha Chakraborty
  • Publication number: 20200227997
    Abstract: An apparatus includes: a switched capacitor (SC) converter to generate a first voltage based on a voltage source; and a direct current-to-direct current (DC-DC) converter to generate a second voltage based on the voltage source of the apparatus. A difference between the first voltage and the second voltage corresponds to an output voltage.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 16, 2020
    Inventors: Timothy McRae, Aleksandar Prodic, Sombuddha Chakraborty, Alvaro Aguilar, William James McIntyre
  • Publication number: 20200211767
    Abstract: A device includes a first inductor and a second inductor reversely coupled with the first inductor, wherein the first and second inductors have overlapping windings. The device also includes a housing for the first and second inductor, wherein the housing is filled with a magnetic molding compound.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Dongbin HOU, Sombuddha CHAKRABORTY, Kenji KAWANO, Jeffrey MORRONI, Yuki SATO
  • Patent number: 10601304
    Abstract: In methods, apparatus, systems, and articles of manufacture to a high efficient hybrid power converter, an example apparatus includes: a switched capacitor (SC) converter to generate a first voltage based on a voltage source; and a direct current-to-direct current (DC-DC) converter to generate a second voltage based on the voltage source of the apparatus, the difference between the first voltage and the second voltage corresponding to an output voltage.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 24, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Timothy McRae, Aleksandar Prodic, Sombuddha Chakraborty, Alvaro Aguilar, William James McIntyre
  • Patent number: 10581312
    Abstract: In described examples, a system regulates provision of DC-DC electrical power. The system includes a DC-DC converter, an input voltage node to receive an input voltage, a current source, a voltage source node, and a ground switch. The DC-DC converter includes a flying capacitor and multiple converter switches. The current source is coupled between the input voltage node and a top plate of the flying capacitor, to provide current to the top plate when the current source is activated by an activation voltage. The voltage source node is coupled to the input voltage node and to the current source, to provide the activation voltage to the current source, such that the activation voltage is not higher than a selected voltage between: a breakdown voltage of the converter switches; and a maximum value of the input voltage minus the breakdown voltage. The ground switch is coupled between a bottom plate of the flying capacitor and a ground.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 3, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yogesh Kumar Ramadass, Jeff Lee Nilles, Sombuddha Chakraborty, Farzad Sahandiesfanjani
  • Publication number: 20190273436
    Abstract: Described herein is a technology for implementing a scalable SCIB regulator for high conversion step down application. Particularly, the SCIB is configured to include stacked input switch circuits with parallel-connected output switch circuits. The input switch circuits are stacked with or without DC shift switch circuits in between. Furthermore, the input voltage is stepped down to a biasing voltage by input switch circuits and then is regulated to one or more output voltages having one or more independent and predetermined values by output switch circuits. The input switch circuits, output switch circuits and DC shift switch circuits can be modified for scalable power capability and ease of control and manufacturing.
    Type: Application
    Filed: November 30, 2018
    Publication date: September 5, 2019
    Inventors: Yichao Tang, Sombuddha Chakraborty