Patents by Inventor Soonam Park

Soonam Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11276559
    Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
  • Patent number: 11264213
    Abstract: Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Qiwei Liang, Xinglong Chen, Kien Chuc, Dmitry Lubomirsky, Soonam Park, Jang-Gyoo Yang, Shankar Venkataraman, Toan Tran, Kimberly Hinckley, Saurabh Garg
  • Publication number: 20210384012
    Abstract: A substrate processing apparatus includes a chamber housing with an upper portion opened, the chamber housing defining a reaction space, a susceptor configured to support a substrate in the chamber housing, and a dielectric cover covering an upper portion of the chamber housing. The dielectric cover includes a dielectric lid, and a mode modifying assembly arranged around the dielectric lid to be spaced apart from the dielectric lid, the mode modifying assembly configured to adjust a distance from the dielectric lid.
    Type: Application
    Filed: February 11, 2021
    Publication date: December 9, 2021
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jinhyuk CHOI, Siqing LU, Sangki NAM, Keesoo PARK, Soonam PARK
  • Patent number: 11195696
    Abstract: An electron beam generator, a plasma processing apparatus, and a plasma processing method, the electron beam generator including a side insulator configured to surround the substrate support, the side insulator having an electron beam chamber therein; a first electrode embedded in the side insulator and adjacent to a first side wall of the electron beam chamber; a second electrode on a second side wall of the electron beam chamber; and a guide in an outlet of the electron beam chamber, the guide including slits through which electron beams generated in the electron beam chamber are transmittable into the process chamber.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 7, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongkyu Shin, Sangki Nam, Soonam Park, Akira Koshiishi, Kyuhee Han
  • Patent number: 11195699
    Abstract: A rotating microwave is established for any resonant mode TEmnl or TMmnl of a cavity, where the user is free to choose the values of the mode indices m, n and l. The fast rotation, the rotation frequency of which is equal to an operational microwave frequency, is accomplished by setting the temporal phase difference ?Ø and the azimuthal angle ?? between two microwave input ports P and Q as functions of m, n and l. The slow rotation of frequency ?a (typically 1-1000 Hz), is established by transforming dual field inputs ? cos ?at and ±? sin ?at in the orthogonal input system into an oblique system defined by the angle ?? between two microwave ports P and Q.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: December 7, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Toan Tran, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20210217591
    Abstract: A method and apparatus for substrate etching are described herein. A processing chamber described herein includes a source module, a process module, a flow module, and an exhaust module. An RF source may be coupled to the chamber and a remote plasma may be generated in the source module and a direct plasma may be generated in the process module. Cyclic etching processes described may use alternating radical and direct plasmas to etch a substrate.
    Type: Application
    Filed: March 31, 2021
    Publication date: July 15, 2021
    Inventors: Toan Q. TRAN, Soonam PARK, Junghoon KIM, Dmitry LUBOMIRSKY
  • Patent number: 11062887
    Abstract: Semiconductor processing systems are described, which may include a substrate support assembly having a substrate support surface. Exemplary substrate support assemblies may include a ceramic heater defining the substrate support surface. The assemblies may include a ground plate on which the ceramic heater is seated. The assemblies may include a stem with which the ground plate is coupled. The assemblies may include an electrode embedded within the ceramic heater at a depth from the substrate support surface. The chambers or systems may also include an RF match configured to provide an AC current and an RF power through the stem to the electrode. The RF match may be coupled with the substrate support assembly along the stem. The substrate support assembly and RF match may be vertically translatable within the semiconductor processing system.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: July 13, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, David Benjaminson, Xikun Wang, Dmitry Lubomirsky
  • Patent number: 11049755
    Abstract: Exemplary support assemblies may include a top puck defining a substrate support surface, where the top puck is also characterized by a height. The assemblies may include a stem coupled with the top puck on a second surface of the top puck opposite the substrate support surface. The assemblies may include an RF electrode embedded within the top puck proximate the substrate support surface. The assemblies may include a heater embedded within the top puck. The assemblies may also include a ground shield embedded within the top puck. The ground shield may be characterized by an inner region extending radially through the top puck. The ground shield may further be characterized by an outer region extending perpendicular to the inner region.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: June 29, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Benjaminson, Michael Grace, Soonam Park, Dmitry Lubomirsky, Jaeyong Cho, Nikolai Kalnin, Don Channa K Kaluarachchi
  • Publication number: 20210189564
    Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 24, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
  • Publication number: 20210151300
    Abstract: A substrate processing apparatus and a method of manufacturing a semiconductor device, the apparatus including a plasma region in which plasma is generated; a processing region in which a substrate is processable; a shower head including a first channel and a second channel, the first channel being a passage through which the plasma flows between the plasma region and the processing region and the second channel being a passage through which a process gas is supplied to the processing region, the first channel and the second channel being separated from each other; a substrate support supporting the substrate in the processing region; and a cooler configured to supply a cooling fluid to a cooling channel of the substrate support.
    Type: Application
    Filed: September 15, 2020
    Publication date: May 20, 2021
    Inventors: Jieun JUNG, Siqing LU, Soonam PARK, Kyuhee HAN
  • Patent number: 11004661
    Abstract: A method and apparatus for substrate etching are described herein. A processing chamber described herein includes a source module, a process module, a flow module, and an exhaust module. An RF source may be coupled to the chamber and a remote plasma may be generated in the source module and a direct plasma may be generated in the process module. Cyclic etching processes described may use alternating radical and direct plasmas to etch a substrate.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: May 11, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Soonam Park, Junghoon Kim, Dmitry Lubomirsky
  • Publication number: 20210110997
    Abstract: An electron beam generator, a plasma processing apparatus, and a plasma processing method, the electron beam generator including a side insulator configured to surround the substrate support, the side insulator having an electron beam chamber therein; a first electrode embedded in the side insulator and adjacent to a first side wall of the electron beam chamber; a second electrode on a second side wall of the electron beam chamber; and a guide in an outlet of the electron beam chamber, the guide including slits through which electron beams generated in the electron beam chamber are transmittable into the process chamber.
    Type: Application
    Filed: April 16, 2020
    Publication date: April 15, 2021
    Inventors: Dongkyu SHIN, Sangki NAM, Soonam PARK, Akira KOSHIISHI, Kyuhee HAN
  • Publication number: 20210074558
    Abstract: A substrate processing apparatus, including a processing chamber including a first internal space and a second internal space arranged in a vertical direction, the first internal space being configured to receive process gas to generate plasma; an induction electrode configured to divide the processing chamber, and having a plurality of through-holes arranged to connect the first internal space and the second internal space, wherein the plurality of through-holes are configured to induce an ion beam extracted from ions included in the plasma generated in the first internal space; a radical supply located in the second internal space, and including a reservoir configured to receive chemical liquid in which an object to be processed is immersed, and a lower electrode configured to apply nanopulses to the reservoir to generate radicals from the chemical liquid; and a chemical liquid supply configured to supply the chemical liquid to the reservoir.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 11, 2021
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang Ki NAM, Jang-Yeob LEE, Sungyeol KIM, Sunghyup KIM, Soonam PARK, Siqing LU
  • Patent number: 10920319
    Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
  • Patent number: 10920320
    Abstract: Methods of monitoring a plasma while processing a semiconductor substrate are described. In embodiments, the methods include determining the difference in power between the power delivered from the plasma power supply and the power received by the plasma in a substrate processing chamber. The power received may be determined using a V/I sensor positioned after the matching circuit. The power reflected or the power lost is the difference between the delivered power and the received power. The process may be terminated by removing the delivered power if the reflected power is above a setpoint. The VRF may further be fourier transformed into frequency space and compared to the stored fourier transform of a healthy plasma process. Missing frequencies from the VRF fourier transform may independently or further indicate an out-of-tune plasma process and the process may be terminated.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Junghoon Kim, Soonam Park, Tae Seung Cho, Dmitry Lubomirsky, Nikolai Kalnin
  • Patent number: 10903052
    Abstract: Exemplary systems according to embodiments of the present technology include a housing that defines a process chamber and a waveguide cavity. A first conductive plate is disposed within the housing. The system also includes a second conductive plate positioned within the housing and at least partially defining the waveguide cavity. The second conductive plate is vertically translatable within the housing to adjust a distance between the first conductive plate and the second conductive plate to affect modes of electromagnetic radiation propagating within the waveguide cavity. The systems also include one or more electronics sets that are configured to transmit the electromagnetic radiation into the waveguide cavity to produce plasma from at least one process gas delivered within the process chamber.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: January 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Nikolai Kalnin, Soonam Park, Toan Tran, Dmitry Lubomirsky
  • Patent number: 10796922
    Abstract: In an embodiment, a plasma source includes a first electrode, configured for transfer of one or more plasma source gases through first perforations therein; an insulator, disposed in contact with the first electrode about a periphery of the first electrode; and a second electrode, disposed with a periphery of the second electrode against the insulator such that the first and second electrodes and the insulator define a plasma generation cavity. The second electrode is configured for movement of plasma products from the plasma generation cavity therethrough toward a process chamber. A power supply provides electrical power across the first and second electrodes to ignite a plasma with the one or more plasma source gases in the plasma generation cavity to produce the plasma products. One of the first electrode, the second electrode and the insulator includes a port that provides an optical signal from the plasma.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: October 6, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Publication number: 20200224313
    Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky, Tien Fak Tan, LokKee Loh, Saravjeet Singh, Tae Won Kim
  • Patent number: 10707061
    Abstract: A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Publication number: 20200185203
    Abstract: A substrate support assembly includes a ground shield and a heater that is surrounded by the ground shield. The ground shield includes a plate. In one embodiment, the ground shield is composed of a ceramic body and includes an electrically conductive layer, a first protective layer on the upper surface of the plate. In another embodiment, the ground shield is composed of an electrically conductive body and a first protective layer on the upper surface of the plate.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 11, 2020
    Inventors: Dmitry Lubomirsky, Xiao Ming He, Jennifer Y. Sun, Xiaowei Wu, Laksheswar Kalita, Soonam Park