Patents by Inventor Sophie KUBACH

Sophie KUBACH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11998272
    Abstract: After OCT scans are acquired, error compensation is be applied anew by identifying motion tracking data that was collected simultaneously with (or closest in time to) each acquired OCT scan. The effects of any previously applied motion tracking information is removed from an OCT scan before applying the new motion tracking data, which may provide higher resolution motion tracking.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: June 4, 2024
    Assignees: Carl Zeiss Meditec, Inc., Carl Zeiss Meditec AG
    Inventors: Luis De Sisternes, Patrick Krawec, Simon Bello, Sophie Kubach
  • Publication number: 20240115127
    Abstract: The system, method and device includes an optical coherence tomography (OCT) system switchable between single scan mode or multi-scan mode. This is achieved by use of multiple beam splitters to produce multiple OCT beams, but the system still uses a single light source, a single sample arm, and single reference arm to achieve a compact, more cost effective, system. Additionally presented is a spectral domain OCT system with a spectrometer having multiple grating, each providing a different depth and/or resolution imaging capability.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 11, 2024
    Applicant: Carl Zeiss Meditec, Inc.
    Inventors: Muzammil A. Arain, Sophie Kubach, Jochen Straub, Tilman Schmoll
  • Publication number: 20220058803
    Abstract: An OCT system includes a machine learning (ML) model trained to receive a single OCT scan/image and provide an image translation and/or denoise function. The ML model may be based on a neural network (NN) architecture including a series of encoding modules in a contracting path followed by a series of decoding modules in an expanding path leading to an output convolution module. An intermediate error module determines a deep error measure, e.g., between a training output image and at least one encoding module and/or decoding module, and an error from the output convolution module is combined with the deep error measure. The NN may be trained using true averaged images as ground truth, training outputs. Alternatively, the NN may be trained using randomly selected, individual OCT images/scans as training outputs.
    Type: Application
    Filed: February 12, 2020
    Publication date: February 24, 2022
    Inventors: Arindam BHATTACHARYA, Warren LEWIS, Sophie KUBACH, Lars OMLOR, Mary DURBIN
  • Patent number: 11000187
    Abstract: An ophthalmic imaging system provides a user interface to facilitate the montaging of scan images collected with various imaging modalities, such as images collected with a fundus imaging system or an optical coherence tomography (OCT) system. The amount of each constituent image used in the montage is dependent upon its respective quality. During the collecting of scans (constituent images) for montaging, any scan may be designated for rescanning, such as if its current quality is deemed less than sufficient. In the case of using an OCT system to collect constituent images (e.g., cube scans), the scanned region of a constituent image may be modified based on physical characteristics of the eye being scanned.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 11, 2021
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Sophie Kubach, Ali Fard, Jennifer Y. Luu, Mary K. Durbin, Matthew J. Everett, Conor Leahy, Luis De Sisternes, Kevin Meng, Gregory G. Anderson, Katherine Makedonsky
  • Publication number: 20210030269
    Abstract: After OCT scans are acquired, error compensation is be applied anew by identifying motion tracking data that was collected simultaneously with (or closest in time to) each acquired OCT scan. The effects of any previously applied motion tracking information is removed from an OCT scan before applying the new motion tracking data, which may provide higher resolution motion tracking.
    Type: Application
    Filed: April 15, 2019
    Publication date: February 4, 2021
    Inventors: Luis DE SISTERNES, Patrick KRAWEC, Simon BELLO, Sophie KUBACH
  • Patent number: 10743763
    Abstract: Methods for improved acquisition and processing of optical coherence tomography (OCT) angiography data are presented. One embodiment involves improving the acquisition of the data by evaluating the quality of different portions of the data to identify sections having non-uniform acquisition parameters or non-uniformities due to opacities in the eye such as floaters. The identified sections can then be brought to the attention of the user or automatically reacquired. In another embodiment, segmentation of layers in the retina includes both structural and flow information derived from motion contrast processing. In a further embodiment, the health of the eye is evaluating by comparing a metric reflecting the density of vessels at a particular location in the eye determined by OCT angiography to a database of values calculated on normal eyes.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: August 18, 2020
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Lin An, Mary K. Durbin, Sophie Kubach, Utkarsh Sharma
  • Publication number: 20190320895
    Abstract: Methods for improved acquisition and processing of optical coherence tomography (OCT) angiography data are presented. One embodiment involves improving the acquisition of the data by evaluating the quality of different portions of the data to identify sections having non-uniform acquisition parameters or non-uniformities due to opacities in the eye such as floaters. The identified sections can then be brought to the attention of the user or automatically reacquired. In another embodiment, segmentation of layers in the retina includes both structural and flow information derived from motion contrast processing. In a further embodiment, the health of the eye is evaluating by comparing a metric reflecting the density of vessels at a particular location in the eye determined by OCT angiography to a database of values calculated on normal eyes.
    Type: Application
    Filed: March 13, 2019
    Publication date: October 24, 2019
    Inventors: Lin AN, Mary K. DURBIN, Sophie KUBACH, Utkarsh SHARMA
  • Patent number: 10238284
    Abstract: Methods for improved acquisition and processing of optical coherence tomography (OCT) angiography data are presented. One embodiment involves improving the acquisition of the data by evaluating the quality of different portions of the data to identify sections having non-uniform acquisition parameters or non-uniformities due to opacities in the eye such as floaters. The identified sections can then be brought to the attention of the user or automatically reacquired. In another embodiment, segmentation of layers in the retina includes both structural and flow information derived from motion contrast processing. In a further embodiment, the health of the eye is evaluating by comparing a metric reflecting the density of vessels at a particular location in the eye determined by OCT angiography to a database of values calculated on normal eyes.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: March 26, 2019
    Assignee: Carl Zeiss Meditec, Inc.
    Inventors: Lin An, Mary K. Durbin, Sophie Kubach, Utkarsh Sharma
  • Publication number: 20190069775
    Abstract: An ophthalmic imaging system provides a user interface to facilitate the montaging of scan images collected with various imaging modalities, such as images collected with a fundus imaging system or an optical coherence tomography (OCT) system. The amount of each constituent image used in the montage is dependent upon its respective quality. During the collecting of scans (constituent images) for montaging, any scan may be designated for rescanning, such as if its current quality is deemed less than sufficient. In the case of using an OCT system to collect constituent images (e.g., cube scans), the scanned region of a constituent image may be modified based on physical characteristics of the eye being scanned.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 7, 2019
    Inventors: Sophie KUBACH, Ali FARD, Jennifer Y. LUU, Mary K. DURBIN, Matthew J. EVERETT, Conor LEAHY, Luis DE SISTERNES, Kevin MENG, Gregory G. ANDERSON, Katherine MAKEDONSKY
  • Publication number: 20180014728
    Abstract: Methods for improved acquisition and processing of optical coherence tomography (OCT) angiography data are presented. One embodiment involves improving the acquisition of the data by evaluating the quality of different portions of the data to identify sections having non-uniform acquisition parameters or non-uniformities due to opacities in the eye such as floaters. The identified sections can then be brought to the attention of the user or automatically reacquired. In another embodiment, segmentation of layers in the retina includes both structural and flow information derived from motion contrast processing. In a further embodiment, the health of the eye is evaluating by comparing a metric reflecting the density of vessels at a particular location in the eye determined by OCT angiography to a database of values calculated on normal eyes.
    Type: Application
    Filed: June 21, 2017
    Publication date: January 18, 2018
    Applicants: Carl Zeiss Meditec, Inc., Carl Zeiss Meditec, Inc.
    Inventors: Lin AN, Mary K. DURBIN, Sophie KUBACH, Utkarsh SHARMA
  • Patent number: 9700206
    Abstract: Methods for improved acquisition and processing of optical coherence tomography (OCT) angiography data are presented. One embodiment involves improving the acquisition of the data by evaluating the quality of different portions of the data to identify sections having non-uniform acquisition parameters or non-uniformities due to opacities in the eye such as floaters. The identified sections can then be brought to the attention of the user or automatically reacquired. In another embodiment, segmentation of layers in the retina includes both structural and flow information derived from motion contrast processing. In a further embodiment, the health of the eye is evaluating by comparing a metric reflecting the density of vessels at a particular location in the eye determined by OCT angiography to a database of values calculated on normal eyes.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: July 11, 2017
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Lin An, Mary K. Durbin, Sophie Kubach, Utkarsh Sharma
  • Publication number: 20160227999
    Abstract: Methods for improved acquisition and processing of optical coherence tomography (OCT) angiography data are presented. One embodiment involves improving the acquisition of the data by evaluating the quality of different portions of the data to identify sections having non-uniform acquisition parameters or non-uniformities due to opacities in the eye such as floaters. The identified sections can then be brought to the attention of the user or automatically reacquired. In another embodiment, segmentation of layers in the retina includes both structural and flow information derived from motion contrast processing. In a further embodiment, the health of the eye is evaluating by comparing a metric reflecting the density of vessels at a particular location in the eye determined by OCT angiography to a database of values calculated on normal eyes.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 11, 2016
    Inventors: Lin AN, Mary K. DURBIN, Sophie KUBACH, Utkarsh SHARMA