Patents by Inventor Soshi Sato

Soshi Sato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920841
    Abstract: An air-conditioning apparatus includes a main circuit in which a compressor, a flow switching device, an indoor heat exchanger, a pressure reducing device, and a plurality of parallel heat exchangers connected in parallel with each other are connected by pipes, a bypass pipe, a flow control device provided to the bypass pipe and configured to adjust a flow rate of refrigerant flowing through the bypass pipe, an evaporating pressure sensor configured to measure an evaporating pressure of the refrigerant, and a controller. The air-conditioning apparatus is configured to operate in a normal heating operation mode and a heating-defrosting operation mode. When an operation associated with the normal heating operation mode is switched to an operation associated with the heating-defrosting operation mode, the controller adjusts an opening degree of the flow control device using the evaporating pressure in the parallel heat exchanger and a driving frequency of the compressor.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 5, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shohei Ishimura, Soshi Ikeda, Kazuya Watanabe, Hideto Nakao, Masakazu Kondo, Yasuhide Hayamaru, Yusuke Tashiro, Masakazu Sato, Atsushi Kawashima
  • Publication number: 20240040779
    Abstract: According to one or more embodiments of the disclosure, an antifuse is provided. The antifuse includes a semiconductor substrate, a dielectric oxide layer on the semiconductor substrate, and a conductive gate layer on the dielectric oxide layer. The dielectric oxide layer includes halogen to facilitate breakdown of the dielectric oxide layer upon application of an antifuse programming voltage.
    Type: Application
    Filed: August 1, 2022
    Publication date: February 1, 2024
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: SOSHI SATO
  • Patent number: 11121310
    Abstract: A structure used in the formation of a spintronics element, the spintronics element to include a plurality of laminated layers, includes a substrate, a plurality of laminated layers formed on the substrate, an uppermost layer of the plurality of laminated layers being a non-magnetic layer containing oxygen, and a protection layer directly formed on the uppermost layer, the protection layer preventing alteration of characteristics of the uppermost layer while exposed in an atmosphere including H2O, a partial pressure of H2O in the atmosphere being equal to or larger than 10?4 Pa, no other layer being directly formed on the protection layer.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: September 14, 2021
    Assignee: TOHOKU UNIVERSITY
    Inventors: Soshi Sato, Masaaki Niwa, Hiroaki Honjo, Shoji Ikeda, Hideo Ohno, Tetsuo Endo
  • Publication number: 20190363245
    Abstract: A structure used in the formation of a spintronics element, the spintronics element to include a plurality of laminated layers, includes a substrate, a plurality of laminated layers formed on the substrate, an uppermost layer of the plurality of laminated layers being a non-magnetic layer containing oxygen, and a protection layer directly formed on the uppermost layer, the protection layer preventing alteration of characteristics of the uppermost layer while exposed in an atmosphere including H2O, a partial pressure of H2O in the atmosphere being equal to or larger than 10?4 Pa, no other layer being directly formed on the protection layer.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 28, 2019
    Applicant: TOHOKU UNIVERSITY
    Inventors: Soshi SATO, Masaaki NIWA, Hiroaki HONJO, Shoji IKEDA, Hideo OHNO, Tetsuo ENDO
  • Patent number: 10424725
    Abstract: A spintronics element including a ferromagnetic layer containing boron, and a diffusion stopper film covering a side face of the ferromagnetic layer partially or entirely, the side face in direct contact with diffusion stopper film, so as to prevent out-diffusion of the boron contained in the ferromagnetic layer. The diffusion stopper film contains boron at a concentration higher than a concentration of the boron in a portion of the ferromagnetic layer where the ferromagnetic layer contacts the diffusion stopper film.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: September 24, 2019
    Assignee: TOHOKU UNIVERSITY
    Inventors: Soshi Sato, Masaaki Niwa, Hiroaki Honjo, Shoji Ikeda, Hideo Sato, Hideo Ohno, Tetsuo Endoh
  • Patent number: 10396274
    Abstract: A method of manufacturing a spintronics element from laminated layers. The method includes (a) forming a plurality of laminated layers in manufacturing equipment, (b) forming a wafer in the manufacturing equipment, including applying a protection layer directly on a non-magnetic uppermost layer of the laminated layers so that the protection layer prevents alteration of characteristics of the uppermost layer, and (c) exposing the wafer, outside of the manufacturing equipment, to an atmosphere that includes H2O having a partial pressure in the atmosphere equal to or larger than 10?4 Pa.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: August 27, 2019
    Assignee: TOHOKU UNIVERSITY
    Inventors: Soshi Sato, Masaaki Niwa, Hiroaki Honjo, Shoji Ikeda, Hideo Ohno, Tetsuo Endo
  • Publication number: 20180301621
    Abstract: A spintronics element including a ferromagnetic layer containing boron, and a diffusion stopper film covering a side face of the ferromagnetic layer partially or entirely, the side face in direct contact with diffusion stopper film, so as to prevent out-diffusion of the boron contained in the ferromagnetic layer. The diffusion stopper film contains boron at a concentration higher than a concentration of the boron in a portion of the ferromagnetic layer where the ferromagnetic layer contacts the diffusion stopper film.
    Type: Application
    Filed: June 20, 2018
    Publication date: October 18, 2018
    Applicant: TOHOKU UNIVERSITY
    Inventors: Soshi SATO, Masaaki NIWA, Hiroaki HONJO, Shoji IKEDA, Hideo SATO, Hideo OHNO, Tetsuo ENDOH
  • Patent number: 9975739
    Abstract: One three-phase transformer (71A) out of two paired three-phase transformers among three-phase transformers provided for respective feeder lines outputs, as operating power, first three-phase AC power of the same voltage phase as that of power-supply power. The other three-phase transformer (71B) out of the two paired three-phase transformers outputs, as the operating power, second three-phase AC power of a voltage phase shifted by ?/6 from that of the power-supply power. The power storage device (4) of a crane apparatus (10) stores DC power supplied from a three-phase full-wave rectifier (1) to a common bus (B), and supplies the stored power to the common bus (B) upon reduction of the DC power.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 22, 2018
    Assignee: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Masaharu Kawaguchi, Soshi Sato, Koji Ohi
  • Patent number: 9802794
    Abstract: A three-phase full-wave rectifier (21) performs full-wave rectification of three-phase AC power (11A) supplied from ground power supply equipment, and supplies obtained DC power (12A) to a common bus (B). A ?-Y connection type three-phase transformer (2) outputs three-phase AC power (11B) of a voltage phase shifted by ?/6 from the three-phase AC power (11A). A three-phase full-wave rectifier (22) performs full-wave rectification of the three-phase AC power (11B) output from the three-phase transformer (2), and supplies obtained DC power (12B) to the common bus (B).
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: October 31, 2017
    Assignee: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Masaharu Kawaguchi, Soshi Sato, Koji Ohi
  • Publication number: 20170263854
    Abstract: A method of manufacturing a spintronics element from laminated layers. The method includes (a) forming a plurality of laminated layers in manufacturing equipment, (b) forming a wafer in the manufacturing equipment, including applying a protection layer directly on a non-magnetic uppermost layer of the laminated layers so that the protection layer prevents alteration of characteristics of the uppermost layer, and (c) exposing the wafer, outside of the manufacturing equipment, to an atmosphere that includes H2O having a partial pressure in the atmosphere equal to or larger than 10?4 Pa.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 14, 2017
    Applicant: TOHOKU UNIVERSITY
    Inventors: Soshi SATO, Masaaki NIWA, Hiroaki HONJO, Shoji IKEDA, Hideo OHNO, Tetsuo ENDO
  • Patent number: 9365397
    Abstract: Provided is a quay crane which includes a seismic isolation device formed from laminated rubber, and which is capable of withstanding a large-scale earthquake. Particularly, provided is a quay crane including a seismic isolation device with a slide length of 1000 mm or over. In a quay crane including a seismic isolation device, the seismic isolation device includes: laminated rubber formed by laminating a steel plate and a rubber material; and an auxiliary support mechanism. The auxiliary support mechanism includes: a supporting body fixed to one of a top plate side and a bottom plate side of the seismic isolation device; and a contacting plate fixed to the other thereof. The supporting body and the contacting plate constituting the auxiliary support mechanism come into contact with each other at least in the event of an earthquake, and the auxiliary support mechanism supports a weight of the quay crane.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 14, 2016
    Assignee: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Kinya Ichimura, Satoru Ogawa, Soshi Sato, Nobuya Kayasuga, Hiroshi Kubo, Hiroshi Kasai, Sho Meno
  • Publication number: 20160023866
    Abstract: One three-phase transformer (71A) out of two paired three-phase transformers among three-phase transformers provided for respective feeder lines outputs, as operating power, first three-phase AC power of the same voltage phase as that of power-supply power. The other three-phase transformer (71B) out of the two paired three-phase transformers outputs, as the operating power, second three-phase AC power of a voltage phase shifted by ?/6 from that of the power-supply power. The power storage device (4) of a crane apparatus (10) stores DC power supplied from a three-phase full-wave rectifier (1) to a common bus (B), and supplies the stored power to the common bus (B) upon reduction of the DC power.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 28, 2016
    Inventors: Masaharu Kawaguchi, Soshi Sato, Koji Ohi
  • Publication number: 20160002011
    Abstract: A three-phase full-wave rectifier (21) performs full-wave rectification of three-phase AC power (11A) supplied from ground power supply equipment, and supplies obtained DC power (12A) to a common bus (B). A ?-Y connection type three-phase transformer (2) outputs three-phase AC power (11B) of a voltage phase shifted by ?/6 from the three-phase AC power (11A). A three-phase full-wave rectifier (22) performs full-wave rectification of the three-phase AC power (11B) output from the three-phase transformer (2), and supplies obtained DC power (12B) to the common bus (B).
    Type: Application
    Filed: February 13, 2013
    Publication date: January 7, 2016
    Inventors: Masaharu Kawaguchi, Soshi Sato, Koji Ohi
  • Publication number: 20150041618
    Abstract: Provided is a quay crane which includes a seismic isolation device formed from laminated rubber, and which is capable of withstanding a large-scale earthquake. Particularly, provided is a quay crane including a seismic isolation device with a slide length of 1000 mm or over. In a quay crane including a seismic isolation device, the seismic isolation device includes: laminated rubber formed by laminating a steel plate and a rubber material; and an auxiliary support mechanism. The auxiliary support mechanism includes: a supporting body fixed to one of a top plate side and a bottom plate side of the seismic isolation device; and a contacting plate fixed to the other thereof. The supporting body and the contacting plate constituting the auxiliary support mechanism come into contact with each other at least in the event of an earthquake, and the auxiliary support mechanism supports a weight of the quay crane.
    Type: Application
    Filed: March 23, 2012
    Publication date: February 12, 2015
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Kinya Ichimura, Satoru Ogawa, Soshi Sato, Nobuya Kayasuga, Hiroshi Kubo, Hiroshi Kasai, Sho Meno