Patents by Inventor Soyeb Nagori

Soyeb Nagori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220014756
    Abstract: Method and system to improve the performance of a video encoder. The method includes processing an initial video signal in a front-end image pre-processor to obtain a processed video signal and processor information respecting the signal, providing the processed video signal and the processor information to a video encoder, and encoding the video signal in the video encoder according to the processor information to provide an encoded video signal for storage. The system includes a video pre-processor connectable to receive an initial video signal. The video encoder in communication with the video pre-processor receives a processed video signal and a processor information. A storage medium in communication with the video encoder stores an encoded video signal.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 13, 2022
    Inventors: Naveen Srinivasamurthy, Manoj Koul, Soyeb Nagori, Peter Labaziewicz, Kedar Chitnis
  • Publication number: 20210392347
    Abstract: Systems, methods and computer readable mediums are presented for encoding a stream of input video frames, in which the input video frames are down sampled and the down sampled frames are encoded in a first encoding pass to generate a set of first pass coded frames forming a single first pass I frame and a plurality of first pass P frames formed into first pass sub-groups of pictures (SUB-GOPs). First pass encoding statistics are generated for individual first pass SUB-GOPs, and the statistics are used to encode the input video frames in a second encoding pass to generate a set of second pass coded frames.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Arun Shankar Kudana, Soyeb Nagori
  • Patent number: 11202067
    Abstract: A method and system for bit rate control during encoding of multimedia data are disclosed. A change in complexity of a multimedia picture relative to complexity associated with one or more multimedia pictures in a multimedia sequence is determined. A complexity associated with a multimedia picture is determined based on number of bits and an average quantization associated with the multimedia picture. A bit rate is adjusted for encoding the multimedia picture based on the change in complexity of the multimedia picture. The bit rate is increased on determining an increase in complexity of the multimedia picture and is decreased on determining a decrease in complexity of the multimedia picture. Utilization of additional bits during the increase in the bit rate and saving of bits during the decrease in the bit rate are compensated during adjusting of bit rates for encoding subsequent multimedia pictures in the multimedia sequence.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: December 14, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naveen Srinivasamurthy, Mahant Siddaramanna, Soyeb Nagori
  • Publication number: 20210352289
    Abstract: Several methods, systems, and computer program products for quantization of video content are disclosed. In an embodiment, the method includes determining by a processing module, motion information associated with a block of video data of the video content. A degree of randomness associated with the block of video data is determined by the processing module based on the motion information. A value of a quantization parameter (QP) associated with the block of video data is modulated by a quantization module based on the determined degree of randomness.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Arun Shankar Kudana, Soyeb Nagori
  • Patent number: 11159797
    Abstract: Method and system to improve the performance of a video encoder. The method includes processing an initial video signal in a front-end image pre-processor to obtain a processed video signal and processor information respecting the signal, providing the processed video signal and the processor information to a video encoder, and encoding the video signal in the video encoder according to the processor information to provide an encoded video signal for storage. The system includes a video pre-processor connectable to receive an initial video signal. The video encoder in communication with the video pre-processor receives a processed video signal and a processor information. A storage medium in communication with the video encoder stores an encoded video signal.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: October 26, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naveen Srinivasamurthy, Manoj Koul, Soyeb Nagori, Peter Labaziewicz, Kedar Chitnis
  • Patent number: 11134252
    Abstract: Systems, methods and computer readable mediums are presented for encoding a stream of input video frames, in which the input video frames are down sampled and the down sampled frames are encoded in a first encoding pass to generate a set of first pass coded frames forming a single first pass I frame and a plurality of first pass P frames formed into first pass sub-groups of pictures (SUB-GOPs). First pass encoding statistics are generated for individual first pass SUB-GOPs, and the statistics are used to encode the input video frames in a second encoding pass to generate a set of second pass coded frames.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 28, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arun Shankar Kudana, Soyeb Nagori
  • Publication number: 20210289233
    Abstract: The disclosure provides a noise filter. The noise filter includes a motion estimation (ME) engine. The ME receives a current frame and a reference frame. The current frame comprising a current block and the reference frame includes a plurality of reference blocks. The ME engine generates final motion vectors. The current block comprises a plurality of current pixels. A motion compensation unit generates a motion compensated block based on the final motion vectors and the reference frame. The motion compensated block includes a plurality of motion compensated pixels. A weighted average filter multiplies each current pixel of the plurality of current pixels and a corresponding motion compensated pixel of the plurality of motion compensated pixels with a first weight and a second weight respectively. The weighted average filter generates a filtered block. A blockiness removal unit is coupled to the weighted average filter and removes artifacts in the filtered block.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 16, 2021
    Inventors: Soyeb Nagori, Shyam Jagannathan, Deepak Kumar Poddar, Arun Shankar Kudana, Pramod Swami, Manoj Koul
  • Publication number: 20210287021
    Abstract: A method for estimating time to collision (TTC) of a detected object in a computer vision system is provided that includes determining a three dimensional (3D) position of a camera in the computer vision system, determining a 3D position of the detected object based on a 2D position of the detected object in an image captured by the camera and an estimated ground plane corresponding to the image, computing a relative 3D position of the camera, a velocity of the relative 3D position, and an acceleration of the relative 3D position based on the 3D position of the camera and the 3D position of the detected object, wherein the relative 3D position of the camera is relative to the 3D position of the detected object, and computing the TTC of the detected object based on the relative 3D position, the velocity, and the acceleration.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 16, 2021
    Inventors: Prashanth Ramanathpur Viswanath, Deepak Kumar Poddar, Soyeb Nagori, Manu Mathew
  • Patent number: 11102485
    Abstract: Several methods, systems, and computer program products for quantization of video content are disclosed. In an embodiment, the method includes determining by a processing module, motion information associated with a block of video data of the video content. A degree of randomness associated with the block of video data is determined by the processing module based on the motion information. A value of a quantization parameter (QP) associated with the block of video data is modulated by a quantization module based on the determined degree of randomness.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: August 24, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arun Shankar Kudana, Soyeb Nagori
  • Publication number: 20210256293
    Abstract: A matching accelerator in the form of a hardware accelerator configured to perform matrix multiplication and/or additional operations is used to optimize keypoint matching. An SSE calculation may be determined by utilizing the matching accelerator to perform matrix multiplication to obtain a cost matrix for two sets of keypoint descriptors from two images. The hardware accelerator may determine a best cost calculation for each keypoint in each direction, which is utilized to perform keypoint matching.
    Type: Application
    Filed: January 14, 2021
    Publication date: August 19, 2021
    Inventors: Deepak Kumar PODDAR, Soyeb NAGORI, Hrushikesh Tukaram GARUD, Pramod Kumar SWAMI
  • Publication number: 20210211680
    Abstract: The disclosure provides a sample adaptive offset (SAO) encoder. The SAO encoder includes a statistics collection (SC) block and a rate distortion optimization (RDO) block coupled to the SC block. The SC block receives a set of deblocked pixels and a set of original pixels. The SC block categorizes each deblocked pixel of the set of deblocked pixels in at least one of a plurality of band and edge categories. The SC block estimates an error in each category as difference between a deblocked pixel of the set of deblocked pixels and corresponding original pixel of the set of original pixels. The RDO block determines a set of candidate offsets associated with each category and selects a candidate offset with a minimum RD cost. The minimum RD cost is used by a SAO type block and a decision block to generate final offsets for the SAO encoder.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 8, 2021
    Inventors: Hrushikesh Tukaram Garud, Mihir Narendra Mody, Soyeb Nagori
  • Patent number: 11051046
    Abstract: The disclosure provides a noise filter. The noise filter includes a motion estimation (ME) engine. The ME receives a current frame and a reference frame. The current frame comprising a current block and the reference frame includes a plurality of reference blocks. The ME engine generates final motion vectors. The current block comprises a plurality of current pixels. A motion compensation unit generates a motion compensated block based on the final motion vectors and the reference frame. The motion compensated block includes a plurality of motion compensated pixels. A weighted average filter multiplies each current pixel of the plurality of current pixels and a corresponding motion compensated pixel of the plurality of motion compensated pixels with a first weight and a second weight respectively. The weighted average filter generates a filtered block. A blockiness removal unit is coupled to the weighted average filter and removes artifacts in the filtered block.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: June 29, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Soyeb Nagori, Shyam Jagannathan, Deepak Kumar Poddar, Arun Shankar Kudana, Pramod Swami, Manoj Koul
  • Publication number: 20210160489
    Abstract: According to an aspect, a video encoder selects a block of intermediate size from a set of block sizes for intra-prediction estimation for encoding a video signal. A set of neighbouring blocks with the intermediate size are tested for combining. If the set of neighbouring blocks are determined to be combinable, the video encoder selects a larger block size formed by the tested neighbouring blocks for encoding. On the other hand, if the set of neighbouring blocks are determined to be not combinable, the video encoder selects a smaller block size from the set of tested neighbouring blocks for prediction. According to another aspect of the present disclosure, the best mode for intra-prediction is determined by first intra-predicting a block with intermediate modes in a set of modes. Then the intra-predictions are performed for the neighbouring modes of at least one intermediate mode.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Mahant Siddaramanna, Naveen Srinivasamurthy, Soyeb Nagori
  • Patent number: 11006124
    Abstract: The disclosure provides a sample adaptive offset (SAO) encoder. The SAO encoder includes a statistics collection (SC) block and a rate distortion optimization (RDO) block coupled to the SC block. The SC block receives a set of deblocked pixels and a set of original pixels. The SC block categorizes each deblocked pixel of the set of deblocked pixels in at least one of a plurality of band and edge categories. The SC block estimates an error in each category as difference between a deblocked pixel of the set of deblocked pixels and corresponding original pixel of the set of original pixels. The RDO block determines a set of candidate offsets associated with each category and selects a candidate offset with a minimum RD cost. The minimum RD cost is used by a SAO type block and a decision block to generate final offsets for the SAO encoder.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: May 11, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hrushikesh Tukaram Garud, Mihir Narendra Mody, Soyeb Nagori
  • Patent number: 10977502
    Abstract: A method for estimating time to collision (TTC) of a detected object in a computer vision system is provided that includes determining a three dimensional (3D) position of a camera in the computer vision system, determining a 3D position of the detected object based on a 2D position of the detected object in an image captured by the camera and an estimated ground plane corresponding to the image, computing a relative 3D position of the camera, a velocity of the relative 3D position, and an acceleration of the relative 3D position based on the 3D position of the camera and the 3D position of the detected object, wherein the relative 3D position of the camera is relative to the 3D position of the detected object, and computing the TTC of the detected object based on the relative 3D position, the velocity, and the acceleration.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: April 13, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Prashanth Ramanathpur Viswanath, Deepak Kumar Poddar, Soyeb Nagori, Manu Mathew
  • Publication number: 20210088331
    Abstract: Estimation of the ground plane of a three dimensional (3D) point cloud based modifications to the random sample consensus (RANSAC) algorithm is provided. The modifications may include applying roll and pitch constraints to the selection of random planes in the 3D point cloud, using a cost function based on the number of inliers in the random plane and the number of 3D points below the random plane in the 3D point cloud, and computing a distance threshold for the 3D point cloud that is used in determining whether or not a 3D point in the 3D point cloud is an inlier of a random plane.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 25, 2021
    Inventors: Soyeb Nagori, Poorna Kumar, Manu Mathew, Prashanth Ramanathpur Viswanath, Deepak Kumar Poddar
  • Patent number: 10939100
    Abstract: According to an aspect, a video encoder selects a block of intermediate size from a set of block sizes for intra-prediction estimation for encoding a video signal. A set of neighbouring blocks with the intermediate size are tested for combining. If the set of neighbouring blocks are determined to be combinable, the video encoder selects a larger block size formed by the tested neighbouring blocks for encoding. On the other hand, if the set of neighbouring blocks are determined to be not combinable, the video encoder selects a smaller block size from the set of tested neighbouring blocks for prediction. According to another aspect of the present disclosure, the best mode for intra-prediction is determined by first intra-predicting a block with intermediate modes in a set of modes. Then the intra-predictions are performed for the neighbouring modes of at least one intermediate mode.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 2, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mahant Siddaramanna, Naveen Srinivasamurthy, Soyeb Nagori
  • Publication number: 20210058623
    Abstract: Several methods and systems for encoding pictures associated with video data are disclosed. In an embodiment, a method includes determining by a processing module, whether a picture is to be encoded based on at least one of a skip assessment associated with the picture and an encoding status of a pre-selected number of pictures preceding the picture in an encoding sequence. The method further includes encoding by the processing module, a plurality of rows of video data associated with the picture upon determining that the picture is to be encoded, wherein the plurality of rows are encoded based on a pre-selected maximum encoded picture size.
    Type: Application
    Filed: November 10, 2020
    Publication date: February 25, 2021
    Inventors: Naveen Srinivasamurthy, Soyeb Nagori, Manoj Koul
  • Publication number: 20210037252
    Abstract: A method of rate control in coding of a video sequence to generate a compressed bit stream is provided that includes computing a sequence base quantization step size for a sequence of pictures in the video sequence, computing a picture base quantization step size for a picture in the sequence of pictures based on the sequence base quantization step size, a type of the picture, and a level of the picture in a rate control hierarchy, and coding the picture using the picture base quantization step size to generate a portion of the compressed bit stream.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 4, 2021
    Inventors: Soyeb Nagori, Arun Shankar Kudana, Manu Mathew
  • Publication number: 20210014502
    Abstract: Several methods and systems for encoding of multimedia pictures are disclosed. In an embodiment, an occupancy level of a coded picture buffer (CPB) associated with a hypothetical reference decoder (HRD) is estimated at an instant of removal of an access unit corresponding to a multimedia picture from the CPB for decoding the access unit. A number of bits for encoding the multimedia picture is allocated based on the estimated occupancy level of the CPB. The multimedia picture is encoded based on the allocated number of bits.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Inventors: Arun Shankar Kudana, Uday Pudipeddi Kiran, Anurag Mithalal Jain, Soyeb Nagori