Patents by Inventor Sri Charan Vemula

Sri Charan Vemula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10483172
    Abstract: A device includes a substrate having an N-active region and a P-active region, a layer of silicon-carbon positioned on an upper surface of the N-active region, a first layer of a first semiconductor material positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on an upper surface of the P-active region, and a layer of a second semiconductor material positioned on the second layer of the first semiconductor material. An N-type transistor is positioned in and above the N-active region and a P-type transistor is positioned in and above the P-active region.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 19, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vara G. Reddy Vakada, Laegu Kang, Michael Ganz, Yi Qi, Puneet Khanna, Srikanth Balaji Samavedam, Sri Charan Vemula, Manfred Eller
  • Publication number: 20180047641
    Abstract: A device includes a substrate having an N-active region and a P-active region, a layer of silicon-carbon positioned on an upper surface of the N-active region, a first layer of a first semiconductor material positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on an upper surface of the P-active region, and a layer of a second semiconductor material positioned on the second layer of the first semiconductor material. An N-type transistor is positioned in and above the N-active region and a P-type transistor is positioned in and above the P-active region.
    Type: Application
    Filed: October 24, 2017
    Publication date: February 15, 2018
    Inventors: Vara G. Reddy Vakada, Laegu Kang, Michael Ganz, Yi Qi, Puneet Khanna, Srikanth Balaji Samavedam, Sri Charan Vemula, Manfred Eller
  • Patent number: 9852954
    Abstract: One illustrative method disclosed herein includes performing a first plurality of epitaxial deposition processes to form a first plurality of semiconductor materials selectively above the N-active region while masking the P-active region, performing a second plurality of epitaxial deposition processes to form a second plurality of semiconductor materials selectively above the P-active region while masking the N-active region, forming an N-type transistor in and above the N-active region and forming a P-type transistor in and above the P-active region.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: December 26, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vara G. Reddy Vakada, Laegu Kang, Michael Ganz, Yi Qi, Puneet Khanna, Srikanth Balaji Samavedam, Sri Charan Vemula, Manfred Eller
  • Patent number: 9362357
    Abstract: A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: June 7, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Laegu Kang, Vara Govindeswara Reddy Vakada, Michael Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Publication number: 20160035630
    Abstract: One illustrative method disclosed herein includes performing a first plurality of epitaxial deposition processes to form a first plurality of semiconductor materials selectively above the N-active region while masking the P-active region, performing a second plurality of epitaxial deposition processes to form a second plurality of semiconductor materials selectively above the P-active region while masking the N-active region, forming an N-type transistor in and above the N-active region and forming a P-type transistor in and above the P-active region.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 4, 2016
    Inventors: Vara G. Reddy Vakada, Laegu Kang, Michael Ganz, Yi Qi, Puneet Khanna, Srikanth Balaji Samavedam, Sri Charan Vemula, Manfred Eller
  • Patent number: 9209181
    Abstract: A method includes forming a layer of silicon-carbon on an N-active region, performing a common deposition process to form a layer of a first semiconductor material on the layer of silicon-carbon and on the P-active region, masking the N-active region, forming a layer of a second semiconductor material on the first semiconductor material in the P-active region and forming N-type and P-type transistors. A device includes a layer of silicon-carbon positioned on an N-active region, a first layer of a first semiconductor positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on a P-active region, a layer of a second semiconductor material positioned on the second layer of the first semiconductor material, and N-type and P-type transistors.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: December 8, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vara G. Reddy Vakada, Laegu Kang, Michael Ganz, Yi Qi, Puneet Khanna, Srikanth Balaji Samavedam, Sri Charan Vemula, Manfred Eller
  • Publication number: 20150249129
    Abstract: A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 3, 2015
    Inventors: Laegu KANG, Vara Govindeswara Reddy VAKADA, Michael GANZ, Yi QI, Puneet KHANNA, Sri Charan VEMULA, Srikanth SAMAVEDAM
  • Patent number: 9099525
    Abstract: A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 4, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Laegu Kang, Vara Govindeswara Reddy Vakada, Michael P. Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Patent number: 9099380
    Abstract: A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: August 4, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vara Govindeswara Reddy Vakada, Laegu Kang, Michael P. Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Publication number: 20150053981
    Abstract: A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
    Type: Application
    Filed: October 10, 2014
    Publication date: February 26, 2015
    Inventors: Vara Govindeswara Reddy VAKADA, Laegu KANG, Michael P. GANZ, Yi QI, Puneet KHANNA, Sri Charan VEMULA, Srikanth SAMAVEDAM
  • Patent number: 8916442
    Abstract: A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: December 23, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vara Govindeswara Reddy Vakada, Laegu Kang, Michael P. Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Publication number: 20140367787
    Abstract: A method includes forming a layer of silicon-carbon on an N-active region, performing a common deposition process to form a layer of a first semiconductor material on the layer of silicon-carbon and on the P-active region, masking the N-active region, forming a layer of a second semiconductor material on the first semiconductor material in the P-active region and forming N-type and P-type transistors. A device includes a layer of silicon-carbon positioned on an N-active region, a first layer of a first semiconductor positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on a P-active region, a layer of a second semiconductor material positioned on the second layer of the first semiconductor material, and N-type and P-type transistors.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Vara G. Reddy Vakada, Laegu Kang, Michael Ganz, Yi Qi, Puneet Khanna, Srikanth Balaji Samavedam, Sri Charan Vemula, Manfred Eller
  • Publication number: 20140197411
    Abstract: A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: GLOBAL FOUNDERIES INC.
    Inventors: Vara Govindeswara Reddy VAKADA, Laegu Kang, Michael P. Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Publication number: 20140183551
    Abstract: A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Laegu Kang, Vara Govindeswara Reddy Vakada, Michael P. Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Publication number: 20140070358
    Abstract: A methodology is disclosed enabling the formation of silicon trench profiles for devices, such as SSRW FETs, having a resultant profile that enables desirable epitaxial growth of semiconductor materials. Embodiments include forming a trench in a silicon wafer between STI regions, thermally treating the silicon surfaces of the trench, and forming Si:C in the trench. The process eliminates a need for an isotropic silicon etch to achieve a desirable flat surface. Further, the flat bottom surface provides a desirable surface for epitaxial growth of semiconductor materials, such as Si:C.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yi Qi, Puneet Khanna, Srikanth Samavedam, Vara G. Vakada, Michael P. Ganz, Sri Charan Vemula, Laegu Kang, Bharat V. Krishnan
  • Patent number: 8030620
    Abstract: A method is provided for creating a plurality of substantially uniform nano-scale features in a substantially parallel manner in which an array of micro-lenses is positioned on a surface of a substrate, where each micro-lens includes a hole such that the bottom of the hole corresponds to a portion of the surface of the substrate. A flux of charged particles, e.g., a beam of positive ions of a selected element, is applied to the micro-lens array. The flux of charged particles is focused at selected focal points on the substrate surface at the bottoms of the holes of the micro-lens array. The substrate is tilted at one or more selected angles to displace the locations of the focal points across the substrate surface. By depositing material or etching the surface of the substrate, several substantially uniform nanometer sized features may be rapidly created in each hole on the surface of the substrate in a substantially parallel manner.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: October 4, 2011
    Assignee: University of Houston
    Inventors: Vincent M. Donnelly, Demetre J. Economou, Paul Ruchhoeft, Lin Xu, Sri Charan Vemula, Manish Kumar Jain
  • Patent number: 7883839
    Abstract: A method is provided for creating a plurality of substantially uniform nano-scale features in a substantially parallel manner in which an array of micro-lenses is positioned on a surface of a substrate, where each micro-lens includes a hole such that the bottom of the hole corresponds to a portion of the surface of the substrate. A flux of charged particles, e.g., a beam of positive ions of a selected element, is applied to the micro-lens array. The flux of charged particles is focused at selected focal points on the substrate surface at the bottoms of the holes of the micro-lens array. The substrate is tilted at one or more selected angles to displace the locations of the focal points across the substrate surface. By depositing material or etching the surface of the substrate, several substantially uniform nanometer sized features may be rapidly created in each hole on the surface of the substrate in a substantially parallel manner.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: February 8, 2011
    Assignee: University of Houston
    Inventors: Vincent M Donnelly, Demetre J. Economou, Paul Ruchhoeft, Lin Xu, Sri Charan Vemula, Manish Kumar Jain
  • Publication number: 20090283215
    Abstract: A method is provided for creating a plurality of substantially uniform nano-scale features in a substantially parallel manner in which an array of micro-lenses is positioned on a surface of a substrate, where each micro-lens includes a hole such that the bottom of the hole corresponds to a portion of the surface of the substrate. A flux of charged particles, e.g., a beam of positive ions of a selected element, is applied to the micro-lens array. The flux of charged particles is focused at selected focal points on the substrate surface at the bottoms of the holes of the micro-lens array. The substrate is tilted at one or more selected angles to displace the locations of the focal points across the substrate surface. By depositing material or etching the surface of the substrate, several substantially uniform nanometer sized features may be rapidly created in each hole on the surface of the substrate in a substantially parallel manner.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 19, 2009
    Applicant: University of Houston
    Inventors: Vincent M. Donnelly, Demetre J. Economou, Paul Ruchhoeft, Lin Xu, Sri Charan Vemula, Manish Kumar Jain