Patents by Inventor SRI SAI SIVAKUMAR VEGUNTA

SRI SAI SIVAKUMAR VEGUNTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11770928
    Abstract: A device has memory cells located within a cell deck of the device. The device includes functional vias within the cell deck, and one or more floating vias within the cell deck. The functional vias are electrically coupled to conductive structures of the device and the one or more floating vias have at least one end electrically isolated from the conductive structures of the device. Methods of forming a device may include forming memory cells in a cell deck, and forming floating vias in a dielectric material adjacent to the memory cells. An overlying mask material is removed from the dielectric material, and at least some memory cells are protected from mechanical damage during the removal of the overlying mask material with the floating vias. Electronic systems may include such devices.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: September 26, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, James A. Cultra, Sri Sai Sivakumar Vegunta
  • Patent number: 11735473
    Abstract: Methods of manufacturing memory devices having memory cells and corresponding selectors, and associated systems and devices, are disclosed herein. In one embodiment, a method of manufacturing a memory device includes (a) removing a protection layer formed over the memory cells and (b) forming a cap layer over the memory cells before forming a conductive via through the memory device. The cap layer is configured to protect the memory cells during operation and can comprise a resistive material. The protection layer can be more efficiently removed with improved process margin and less device health impact using a polishing process before the conductive via is formed, thus increasing the manufacturing margin of the memory device.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: August 22, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jukuan Zheng, Sri Sai Sivakumar Vegunta, Kevin L. Baker, Josiah Jebaraj Johnley Muthuraj, Efe S. Ege
  • Publication number: 20220271052
    Abstract: A device has memory cells located within a cell deck of the device. The device includes functional vias within the cell deck, and one or more floating vias within the cell deck. The functional vias are electrically coupled to conductive structures of the device and the one or more floating vias have at least one end electrically isolated from the conductive structures of the device. Methods of forming a device may include forming memory cells in a cell deck, and forming floating vias in a dielectric material adjacent to the memory cells. An overlying mask material is removed from the dielectric material, and at least some memory cells are protected from mechanical damage during the removal of the overlying mask material with the floating vias. Electronic systems may include such devices.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Inventors: Hongqi Li, James A. Cultra, Sri Sai Sivakumar Vegunta
  • Patent number: 11355508
    Abstract: A device has memory cells located within a cell deck of the device. The device includes functional vias within the cell deck, and one or more floating vias within the cell deck. The functional vias are electrically coupled to conductive structures of the device and the one or more floating vias have at least one end electrically isolated from the conductive structures of the device. Methods of forming a device may include forming memory cells in a cell deck, and forming floating vias in a dielectric material adjacent to the memory cells. An overlying mask material is removed from the dielectric material, and at least some memory cells are protected from mechanical damage during the removal of the overlying mask material with the floating vias. Electronic systems may include such devices.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: June 7, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, James A. Cultra, Sri Sai Sivakumar Vegunta
  • Publication number: 20220068702
    Abstract: Methods of manufacturing memory devices having memory cells and corresponding selectors, and associated systems and devices, are disclosed herein. In one embodiment, a method of manufacturing a memory device includes (a) removing a protection layer formed over the memory cells and (b) forming a cap layer over the memory cells before forming a conductive via through the memory device. The cap layer is configured to protect the memory cells during operation and can comprise a resistive material. The protection layer can be more efficiently removed with improved process margin and less device health impact using a polishing process before the conductive via is formed, thus increasing the manufacturing margin of the memory device.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Inventors: Jukuan Zheng, Sri Sai Sivakumar Vegunta, Kevin L. Baker, Josiah Jebaraj Johnley Muthuraj, Efe S. Ege
  • Publication number: 20220052061
    Abstract: A device has memory cells located within a cell deck of the device. The device includes functional vias within the cell deck, and one or more floating vias within the cell deck. The functional vias are electrically coupled to conductive structures of the device and the one or more floating vias have at least one end electrically isolated from the conductive structures of the device. Methods of forming a device may include forming memory cells in a cell deck, and forming floating vias in a dielectric material adjacent to the memory cells. An overlying mask material is removed from the dielectric material, and at least some memory cells are protected from mechanical damage during the removal of the overlying mask material with the floating vias. Electronic systems may include such devices.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 17, 2022
    Inventors: Hongqi Li, James A. Cultra, Sri Sai Sivakumar Vegunta
  • Patent number: 11201083
    Abstract: Methods of manufacturing memory devices having memory cells and corresponding selectors, and associated systems and devices, are disclosed herein. In one embodiment, a method of manufacturing a memory device includes (a) removing a protection layer formed over the memory cells and (b) forming a cap layer over the memory cells before forming a conductive via through the memory device. The cap layer is configured to protect the memory cells during operation and can comprise a resistive material. The protection layer can be more efficiently removed with improved process margin and less device health impact using a polishing process before the conductive via is formed, thus increasing the manufacturing margin of the memory device.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: December 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jukuan Zheng, Sri Sai Sivakumar Vegunta, Kevin L. Baker, Josiah Jebaraj Johnley Muthuraj, Efe S. Ege
  • Patent number: 11088017
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Publication number: 20210202299
    Abstract: Methods of manufacturing memory devices having memory cells and corresponding selectors, and associated systems and devices, are disclosed herein. In one embodiment, a method of manufacturing a memory device includes (a) removing a protection layer formed over the memory cells and (b) forming a cap layer over the memory cells before forming a conductive via through the memory device. The cap layer is configured to protect the memory cells during operation and can comprise a resistive material. The protection layer can be more efficiently removed with improved process margin and less device health impact using a polishing process before the conductive via is formed, thus increasing the manufacturing margin of the memory device.
    Type: Application
    Filed: February 3, 2020
    Publication date: July 1, 2021
    Inventors: Jukuan Zheng, Sri Sai Sivakumar Vegunta, Kevin L. Baker, Josiah Jebaraj Johnley Muthuraj, Efe S. Ege
  • Patent number: 11010058
    Abstract: A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damaria, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Publication number: 20200203220
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Patent number: 10600682
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: March 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Publication number: 20190294330
    Abstract: Solid state memory technology is disclosed. In one example, a solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. In another example, a solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Applicant: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Publication number: 20190206727
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Application
    Filed: October 26, 2018
    Publication date: July 4, 2019
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Patent number: 10318170
    Abstract: Solid state memory technology is disclosed. A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Patent number: 10269625
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: April 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Publication number: 20190051662
    Abstract: A three dimensional memory device is described having an array region and a periphery region. The array region has a three dimensional stack of storage cells. The periphery region has contacts that extend from above the three dimensional stack of storage cells to below the three dimensional stack of storage cells. The periphery region is substantially devoid of conducting and/or semi-conducting layers of the three dimensional stack of storage cells.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Inventors: Sri Sai Sivakumar VEGUNTA, Gowrisankar DAMARLA, Jian ZHOU
  • Publication number: 20180307412
    Abstract: Solid state memory technology is disclosed. In one example, a solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. In another example, a solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Application
    Filed: January 2, 2018
    Publication date: October 25, 2018
    Applicant: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Patent number: 10096612
    Abstract: A three dimensional memory device is described having an array region and a periphery region. The array region has a three dimensional stack of storage cells. The periphery region has contacts that extend from above the three dimensional stack of storage cells to below the three dimensional stack of storage cells. The periphery region is substantially devoid of conducting and/or semi-conducting layers of the three dimensional stack of storage cells.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 9, 2018
    Assignee: Intel Corporation
    Inventors: Sri Sai Sivakumar Vegunta, Gowrisankar Damarla, Jian Zhou
  • Patent number: 9857989
    Abstract: A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can also include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods can include or otherwise utilize such solid state memory components.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau