Patents by Inventor Sridhar Karthik Kailasam

Sridhar Karthik Kailasam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190324342
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Gordon E. Jack, Sridhar Karthik Kailasam, Stephen Clark Brown, Anshu A. Pradhan
  • Publication number: 20190317458
    Abstract: Optically controllable windows and an associated window control system provide a building security platform. A window controller or other processing device can monitor for window breakage, cameras associated with windows can monitor for intruders, and transparent displays can provide alerts regarding detected activity within a building. A window control system can detect deviations from expected UV characteristics of an optically controllable window during normal operation of the window (tint transitions, steady state conditions, etc.) and/or during application of a security-related perturbing event, and provide alerts upon their occurrence.
    Type: Application
    Filed: June 5, 2019
    Publication date: October 17, 2019
    Inventors: Dhairya Shrivastava, Stephen Clark Brown, Gordon E. Jack, Rob Puth, Illayathambi Kunadian, Oner Bicakci, Sridhar Karthik Kailasam, Fabian Strong, Brandon Tinianov, Joseph Lunardi
  • Publication number: 20190302561
    Abstract: Various embodiments herein relate to electrochromic devices and electrochromic device precursors, as well as methods and apparatus for fabricating such electrochromic devices and electrochromic device precursors. In certain embodiments, the electrochromic device or precursor may include one or more particular materials such as a particular electrochromic material and/or a particular counter electrode material. In various implementations, the electrochromic material includes tungsten titanium molybdenum oxide. In these or other implementation, the counter electrode material may include nickel tungsten oxide, nickel tungsten tantalum oxide, nickel tungsten niobium oxide, nickel tungsten tin oxide, or another material.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 3, 2019
    Inventors: Robert T. Rozbicki, Sridhar Karthik Kailasam
  • Publication number: 20190219881
    Abstract: Electromagnetic-shielding, electrochromic windows comprising a first multi-layer conductor, an electrochromic stack disposed on the first multi-layer conductor, and a second multi-layer conductor, wherein the one or more multi-layer conductors with an electromagnetic shielding stack configured to be activated to block electromagnetic communication signals through the windows.
    Type: Application
    Filed: August 18, 2017
    Publication date: July 18, 2019
    Inventors: Dhairya Shrivastava, Stephen Clark Brown, Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie
  • Publication number: 20190171076
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Application
    Filed: January 16, 2019
    Publication date: June 6, 2019
    Inventors: Sridhar Karthik Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Thomas Gillaspie, Todd William Martin, Anshu A. Pradhan, Ronald M. Parker
  • Patent number: 10254615
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: April 9, 2019
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20190032195
    Abstract: Described are methods of fabricating lithium sputter targets, lithium sputter targets, associated handling apparatus, and sputter methods including lithium targets. Various embodiments address adhesion of the lithium metal target to a support structure, avoiding and/or removing passivating coatings formed on the lithium target, uniformity of the lithium target as well as efficient cooling of lithium during sputtering. Target configurations used to compensate for non-uniformities in sputter plasma are described. Modular format lithium tiles and methods of fabrication are described. Rotary lithium sputter targets are also described.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Disha Mehtani, Sridhar Karthik Kailasam, Trevor Frank, Todd William Martin, Jason Satern, Que Anh Song Nguyen, Dhairya Shrivastava, Martin John Neumann, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10054833
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 21, 2018
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20180231858
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20180203320
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 19, 2018
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20180157140
    Abstract: This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
    Type: Application
    Filed: January 9, 2018
    Publication date: June 7, 2018
    Inventors: Yashraj Bhatnagar, Trevor Frank, Fabian Strong, Sridhar Karthik Kailasam, Robert Babcock, Ronald M. Parker, Robert T. Rozbicki
  • Publication number: 20180095337
    Abstract: Electrochromic devices comprise first and second conductors, wherein at least one of the first and second conductors is a multi-layered conductor. The electrochromic devices further comprise an electrochromic stack between the conductors adjacent to a substrate. The at least one multi-layered conductor comprises a metal layer sandwiched between a first non-metal layer and a second non-metal layer such that the metal layer does not contact the electrochromic stack.
    Type: Application
    Filed: March 18, 2016
    Publication date: April 5, 2018
    Applicant: View, Inc.
    Inventors: Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie
  • Publication number: 20180081250
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 22, 2018
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 9904138
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 27, 2018
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20170371218
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 28, 2017
    Inventors: Sridhar Karthik Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Thomas Gillaspie, Todd William Martin, Anshu A. Pradhan, Ronald M. Parker
  • Publication number: 20170299933
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: May 4, 2017
    Publication date: October 19, 2017
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20170003566
    Abstract: Methods, apparatus, and systems for mitigating pinhole defects in optical devices such as electrochromic windows. One method mitigates a pinhole defect in an electrochromic device by identifying the site of the pinhole defect and obscuring the pinhole to make it less visually discernible.
    Type: Application
    Filed: August 30, 2016
    Publication date: January 5, 2017
    Inventors: Robin Friedman, Sridhar Karthik Kailasam, Rao Mulpuri, Ronald M. Parker, Ronald A. Powell, Anshu A. Pradhan, Robert T. Rozbicki, Vinod Khosla
  • Publication number: 20160327846
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki