Patents by Inventor Sridhar Narasimhan

Sridhar Narasimhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7332423
    Abstract: One example electronic assembly includes a substrate that has a plurality of contacts which become bonded to a plurality of contacts on a die. The electronic assembly further includes a male member that extends from at least one of the substrate and the die and a female member that extends from the other of the substrate and the die. The male member is inserted into the female member to align the die relative to the substrate. The male member and the female member may have any configuration as long as one or more portions of the male member extend partially, or wholly, into the female member. An example method includes aligning a die relative to a substrate by inserting a male member that extends from one of the die and the substrate into a female member that extends from the other of the die and the substrate.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: February 19, 2008
    Assignee: Intel Corporation
    Inventors: Robert Starkston, Sridhar Narasimhan, Chia-Pin Chiu, Suzana Prstic, Patrick N Stover, Hong Xie
  • Publication number: 20070264343
    Abstract: Pharmaceutical formulations and methods are provided for the sustained delivery of a pharmaceutical agent to a patient by injection. The injectable formulation includes porous microparticles which comprise a pharmaceutical agent and a matrix material, wherein upon injection of the formulation a therapeutically or prophylactically effective amount of the pharmaceutical agent is released from the microparticles for at least 24 hours. A method for making the injectable, sustained release pharmaceutical formulation may include dissolving a hydrophobic matrix material in a volatile solvent to form a first solution; adding a pharmaceutical agent to the first solution to form an emulsion, suspension, or second solution; and removing the volatile solvent from the emulsion, suspension, or second solution to yield porous microparticles which comprise the pharmaceutical agent dispersed, entrapped or encapsulated within the structure of the hydrophobic matrix material.
    Type: Application
    Filed: July 27, 2007
    Publication date: November 15, 2007
    Applicant: ACUSPHERE, INC.
    Inventors: Howard Bernstein, Donald Chickering, Eric Huang, Sridhar Narasimhan, Shaina Reese, Julie Straub
  • Publication number: 20070178165
    Abstract: A method is provided for making a parenteral dosage form of a pharmaceutical agent which includes (a) providing particles of a pharmaceutical agent; (b) blending the particles with particles of at least one bulking agent to form a first powder blend, which does not include a surfactant; (c) milling the first powder blend to form a milled blend which comprises microparticles or nanoparticles of the pharmaceutical agent; and (d) reconstituting the milled blend with a liquid vehicle, which includes at least one surfactant, for parenteral administration. A method also is provided which includes (a) providing particles of a pharmaceutical agent; (b) blending these particles with particles of an excipient to form a first blend; and (c) milling the first blend to form a milled blend that includes microparticles or nanoparticles, which exhibits a greater dispersibility, wettability, and suspendability as compared to the particles of step (a) or the first blend.
    Type: Application
    Filed: December 14, 2006
    Publication date: August 2, 2007
    Applicant: ACUSPHERE, INC.
    Inventors: David Altreuter, Howard Bernstein, Luis Brito, Shaina Brito, Olinda Carneiro, Donald Chickering, Eric Huang, Rajeev Jain, Sridhar Narasimhan, Namrata Pandit, Julie Straub
  • Publication number: 20070148211
    Abstract: A method is provided for making an oral dosage form of a pharmaceutical agent which includes the steps of (a) providing particles which include a pharmaceutical agent; (b) blending the particles with particles of a pre-processed excipient to form a primary blend, wherein the pre-processed excipient is prepared by (i) dissolving a bulking agent (e.g., a sugar) and at least one non-friable excipient (e.g., a waxy or liquid surfactant) in a solvent to form an excipient solution, and (ii) removing the solvent from the excipient solution to form the pre-processed excipient in dry powder form; (c) milling the primary blend to form a milled pharmaceutical formulation blend that includes microparticles or nanoparticles of the pharmaceutical agent; and (d) processing the milled pharmaceutical formulation blend into a solid oral dosage form or liquid suspension for oral administration. The process yields formulations having improved wettability or dispersibility.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 28, 2007
    Applicant: Acusphere, Inc.
    Inventors: David Altreuter, Howard Bernstein, Luis Brito, Shaina Brito, Donald Chickering, Eric Huang, Rajeev Jain, Sridhar Narasimhan, Julie Straub
  • Publication number: 20070001318
    Abstract: One example electronic assembly includes a substrate that has a plurality of contacts which become bonded to a plurality of contacts on a die. The electronic assembly further includes a male member that extends from at least one of the substrate and the die and a female member that extends from the other of the substrate and the die. The male member is inserted into the female member to align the die relative to the substrate. The male member and the female member may have any configuration as long as one or more portions of the male member extend partially, or wholly, into the female member. An example method includes aligning a die relative to a substrate by inserting a male member that extends from one of the die and the substrate into a female member that extends from the other of the die and the substrate.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventors: Robert Starkston, Sridhar Narasimhan, Chia-Pin Chiu, Suzana Prstic, Patrick Stover, Hong Xie
  • Publication number: 20060093678
    Abstract: Methods are provided for making a dry powder blend pharmaceutical formulation comprising (i) forming microparticles which comprise a pharmaceutical agent; (ii) providing at least one excipient in the form of particles having a volume average diameter that is greater than the volume average diameter of the microparticles; (iii) blending the microparticles with the excipient to form a powder blend; and (iv) jet milling the powder blend to deagglomerate at least a portion of any of the microparticles which have agglomerated, while substantially maintaining the size and morphology of the individual microparticles. Jet milling advantageously can eliminate the need for more complicated wet deagglomeration processes, can lower residual moisture and solvent levels in the microparticles (which leads to better stability and handling properties for dry powder formulations), and can improve wettability, suspendability, and content uniformity of dry powder blend formulations.
    Type: Application
    Filed: December 16, 2005
    Publication date: May 4, 2006
    Inventors: Donald Chickering, Shaina Reese, Sridhar Narasimhan, Julie Straub, Howard Bernstein, David Altreuter, Eric Huang
  • Publication number: 20060093677
    Abstract: Methods are provided for making a dry powder blend pharmaceutical formulation comprising (i) forming microparticles which comprise a pharmaceutical agent; (ii) providing at least one excipient in the form of particles having a volume average diameter that is greater than the volume average diameter of the microparticles; (iii) blending the microparticles with the excipient to form a powder blend; and (iv) jet milling the powder blend to deagglomerate at least a portion of any of the microparticles which have agglomerated, while substantially maintaining the size and morphology of the individual microparticles. Jet milling advantageously can eliminate the need for more complicated wet deagglomeration processes, can lower residual moisture and solvent levels in the microparticles (which leads to better stability and handling properties for dry powder formulations), and can improve wettability, suspendability, and content uniformity of dry powder blend formulations.
    Type: Application
    Filed: December 16, 2005
    Publication date: May 4, 2006
    Inventors: Donald Chickering, Shaina Reese, Sridhar Narasimhan, Julie Straub, Howard Bernstein, David Altreuter, Eric Huang
  • Patent number: 6962006
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: November 8, 2005
    Assignee: Acusphere, Inc.
    Inventors: Donald E. Chickering, III, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
  • Publication number: 20050209099
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Application
    Filed: June 2, 2005
    Publication date: September 22, 2005
    Inventors: Donald Chickering, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie Straub, Howard Bernstein
  • Patent number: 6921458
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: July 26, 2005
    Assignee: Acusphere, Inc.
    Inventors: Donald E. Chickering, III, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
  • Patent number: 6918991
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: July 19, 2005
    Assignee: Acusphere, Inc.
    Inventors: Donald E. Chickering, III, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
  • Publication number: 20050079138
    Abstract: Methods are provided for making a dry powder blend pharmaceutical formulation, comprising the steps of: (a) providing microparticles which comprise a pharmaceutical agent; (b) blending the microparticles with at least one excipient in the form of particles to form a powder blend; and (c) jet milling the powder blend to form a dry powder blend pharmaceutical formulation having improved dispersibility, suspendability, or wettability as compared to the microparticles of step (a) or the powder blend of step (b). The method can further include dispersing the dry powder blend pharmaceutical formulation in a liquid pharmaceutically acceptable vehicle to make an formulation suitable for injection. Alternatively, the method can further include processing the dry powder blend pharmaceutical formulation into a solid oral dosage form. In one embodiment, the microparticles of step (a) are formed by a solvent precipitation or crystallization process.
    Type: Application
    Filed: September 30, 2004
    Publication date: April 14, 2005
    Inventors: Donald Chickering, Shaina Reese, Sridhar Narasimhan, Julie Straub, Howard Bernstein, David Altreuter, Eric Huang, Luis Brito, Rajeev Jain
  • Publication number: 20050069591
    Abstract: Pharmaceutical formulations and methods are provided for the sustained delivery of a pharmaceutical agent to a patient by injection, by oral administration or by topical administration. The injectable formulation includes porous microparticles which comprise a pharmaceutical agent and a matrix material, wherein upon injection of the formulation a therapeutically or prophylactically effective amount of the pharmaceutical agent is released from the microparticles for at least 24 hours. The oral formulation includes porous microparticles which comprise a pharmaceutical agent and a matrix material, wherein a therapeutically or prophylactically effective amount of the pharmaceutical agent is released from the microparticles for at least 2 hours following oral administration.
    Type: Application
    Filed: September 27, 2004
    Publication date: March 31, 2005
    Inventors: Howard Bernstein, Donald Chickering, Eric Huang, Sridhar Narasimhan, Shaina Reese, Julie Straub
  • Publication number: 20040139624
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 22, 2004
    Inventors: Donald E. Chickering, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
  • Publication number: 20040134091
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 15, 2004
    Inventors: Donald E. Chickering, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
  • Publication number: 20040118007
    Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Applicant: ACUSPHERE, INC.
    Inventors: Donald E. Chickering, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
  • Publication number: 20040121003
    Abstract: Methods are provided for making a dry powder blend pharmaceutical formulation comprising (i) forming microparticles which comprise a pharmaceutical agent; (ii) providing at least one excipient in the form of particles having a volume average diameter that is greater than the volume average diameter of the microparticles; (iii) blending the microparticles with the excipient to form a powder blend; and (iv) jet milling the powder blend to deagglomerate at least a portion of any of the microparticles which have agglomerated, while substantially maintaining the size and morphology of the individual microparticles. Jet milling advantageously can eliminate the need for more complicated wet deagglomeration processes, can lower residual moisture and solvent levels in the microparticles (which leads to better stability and handling properties for dry powder formulations), and can improve wettability, suspendability, and content uniformity of dry powder blend formulations.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Applicant: ACUSPHERE, INC.
    Inventors: Donald E. Chickering, Shaina Reese, Sridhar Narasimhan, Julie A. Straub, Howard Bernstein, David Altreuter, Eric K. Huang
  • Publication number: 20040105821
    Abstract: Pharmaceutical formulations and methods are provided for the sustained delivery of a pharmaceutical agent to the lungs of a patient by inhalation. The formulation includes porous microparticles which comprise a pharmaceutical agent and a matrix material, wherein upon inhalation of the formulation a therapeutically or prophylactically effective amount of the pharmaceutical agent is released from the microparticles in the lungs for at least 2 hours. Preferably, a majority of the pharmaceutical agent is released from the microparticles by 24 hours following inhalation, for example where a majority of the pharmaceutical agent is released no earlier than about 2 hours and no later than about 24 hours following inhalation. Methods for delivering a pharmaceutical agent, such as a corticosteroid, to the lungs of a patient are also provided. For example, the method includes having the patient inhale a dry powder blend comprising the present microparticles and a pharmaceutically acceptable bulking agent.
    Type: Application
    Filed: September 30, 2003
    Publication date: June 3, 2004
    Inventors: Howard Bernstein, Donald E. Chickering, Eric K. Huang, Shaina Reese, Sridhar Narasimhan, Julie A. Straub