Patents by Inventor Srinivasan Kodaganallur Ganapathi

Srinivasan Kodaganallur Ganapathi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9605965
    Abstract: A method of fabricating a gyroscope may involve depositing conductive material on a substrate, forming an anchor on the substrate, forming a drive frame on the anchor and forming pairs of drive beams on opposing sides of the anchor. The drive beams may be configured to constrain the drive frame to rotate substantially in the plane of the drive beams. The method may involve forming a proof mass around the drive frame and forming a plurality of sense beams that connect the drive frame to the proof mass. The sense beams may be tapered sense beams having a width that decreases with increasing distance from the anchor. The tapered sense beams may be configured to allow sense motions of the proof mass in a sense plane substantially perpendicular to the plane of the drive beams in response to an applied angular rotation. Some components may be formed from plated metal.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: March 28, 2017
    Assignee: SnapTrack, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Patent number: 9459099
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a sense frame, a proof mass disposed outside the sense frame, a pair of anchors and a plurality of drive beams. The plurality of drive beams may be disposed on opposing sides of the sense frame and between the pair of anchors. The drive beams may connect the sense frame to the proof mass. The drive beams may be configured to cause torsional oscillations of the proof mass substantially in a first plane of the drive beams. The sense frame may be substantially decoupled from the drive motions of the proof mass. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 4, 2016
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Patent number: 9410805
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a central anchor, a sense frame disposed around the central anchor, a plurality of sense beams configured for connecting the sense frame to the central anchor and a drive frame disposed around and coupled to the sense frame. The gyroscope may include pairs of drive beams disposed on opposing sides of the sense frame. The gyroscope may include a drive frame suspension for substantially restricting a drive motion of the drive frame to that of a substantially linear displacement along the first axis. The sense frame may be substantially decoupled from drive motions of the drive frame. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: August 9, 2016
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Patent number: 9110281
    Abstract: This disclosure provides systems, methods and apparatus for masked reflective structures which can be integrated into display devices. In one aspect, masks and etch leading layers can be used to control the etching of a stack of layers to form masked reflective structures having a desired profile. In particular, tapered edges at a particular angle can be formed, and the resulting structures used in a roll-to-roll process to fabricate a device component.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 18, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ming-Hau Tung, Srinivasan Kodaganallur Ganapathi
  • Patent number: 9021880
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using x-axis gyroscopes, y-axis gyroscopes, z-axis gyroscopes, two-axis accelerometers and three-axis accelerometers. Combining fabrication processes for such devices can enable the monolithic integration of six inertial sensing axes on a single substrate, such as a single glass substrate. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 5, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, Cenk Acar, Ravindra Vaman Shenoy, David William Burns, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi
  • Patent number: 9024910
    Abstract: A touch sensor may include a digital resistive touch (DRT) sensor architecture that is substantially free of air gaps. The DRT touch sensor may include a layer of force-sensitive resistor (FSR) material on an array of row and column electrodes. The electrodes may be formed on a substantially transparent substrate. Near the intersection of each row and column, one or more thin transparent patterned conductive bridges may be situated above the FSR. The conductive bridges may be configured for electrical connection with row and column electrodes when force is applied to the conductive bridge or surface of the touch sensor. Some touch sensors may include both DRT and projected capacitive touch (PCT) functionality.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 5, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, Nicholas Ian Buchan, David William Burns, Kristopher Andrew Lavery, Srinivasan Kodaganallur Ganapathi
  • Patent number: 9000656
    Abstract: This disclosure provides systems, apparatus, and devices and methods of fabrication for electromechanical devices. In one implementation, an apparatus includes a metal proof mass and a piezoelectric component as part of a MEMS device. Such apparatus can be particularly useful for MEMS gyroscope devices. For instance, the metal proof mass, which may have a density several times larger than that of silicon, is capable of reducing the quadrature and bias error in a MEMS gyroscope device, and capable of increasing the sensitivity of the MEMS gyroscope device.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 7, 2015
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Justin Phelps Black, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Kurt Edward Peterson, Cenk Acar, Ravindra Vaman Shenoy, Nicholas Ian Buchan
  • Patent number: 8743082
    Abstract: A separate control system may be configured for a combined sensor device. Alternatively, at least part of the control system may be included in another device, such as a processor of a mobile device. Software for handwriting, touch and fingerprint detection may be included in the control system. Low, medium and high resolution may be obtained with a single combined sensor device by scanning a subset of the sensels, or by aggregating lines or columns. Power consumption may be reduced by aggregating sensor pixels (or rows or columns) electrically using the controller, so that they perform as a low power small array until higher resolution with a larger array is needed. Power consumption may be reduced by turning off portions or all of the sensor device, turning off parts of the control system, and/or employing first-level screening at a reduced frame rate.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: June 3, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Srinivasan Kodaganallur Ganapathi, Nicholas Ian Buchan, David William Burns, Thad William Smith, Ion Elinor Opris
  • Patent number: 8724038
    Abstract: This disclosure provides systems, methods and apparatus for a combined sensor device. In some implementations, a combined sensor device includes a wrap-around configuration wherein an upper flexible substrate has patterned conductive material on an extended portion to allow routing of signal lines, electrical ground, and power. One or more integrated circuits or passive components, which may include connecting sockets, may be mounted onto the flexible layer to reduce cost and complexity. Such implementations may eliminate a flex cable and may allow a bezel-less configuration.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: May 13, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Srinivasan Kodaganallur Ganapathi, Nicholas Ian Buchan, Kurt Edward Petersen, Ravindra V. Shenoy, Peng Cheng Lin, Ericson Cheng
  • Publication number: 20140041174
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Some gyroscopes include a drive frame, a central anchor and a plurality of drive beams disposed on opposing sides of the central anchor. The drive beams may connect the drive frame to the central anchor. The drive beams may include a piezoelectric layer and may be configured to cause the drive frame to oscillate torsionally in a plane of the drive beams. The gyroscope may also include a proof mass and a plurality of piezoelectric sense beams. At least some components may be formed from plated metal. The drive frame may be disposed within the proof mass. The drive beams may constrain the drive frame to rotate substantially in the plane of the drive beams. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20140013557
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a sense frame, a proof mass disposed outside the sense frame, a pair of anchors and a plurality of drive beams. The plurality of drive beams may be disposed on opposing sides of the sense frame and between the pair of anchors. The drive beams may connect the sense frame to the proof mass. The drive beams may be configured to cause torsional oscillations of the proof mass substantially in a first plane of the drive beams. The sense frame may be substantially decoupled from the drive motions of the proof mass. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: July 31, 2013
    Publication date: January 16, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20130333175
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a central anchor, a sense frame disposed around the central anchor, a plurality of sense beams configured for connecting the sense frame to the central anchor and a drive frame disposed around and coupled to the sense frame. The gyroscope may include pairs of drive beams disposed on opposing sides of the sense frame. The gyroscope may include a drive frame suspension for substantially restricting a drive motion of the drive frame to that of a substantially linear displacement along the first axis. The sense frame may be substantially decoupled from drive motions of the drive frame. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: July 31, 2013
    Publication date: December 19, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Patent number: 8584522
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Some gyroscopes include a drive frame, a central anchor and a plurality of drive beams disposed on opposing sides of the central anchor. The drive beams may connect the drive frame to the central anchor. The drive beams may include a piezoelectric layer and may be configured to cause the drive frame to oscillate torsionally in a plane of the drive beams. The gyroscope may also include a proof mass and a plurality of piezoelectric sense beams. At least some components may be formed from plated metal. The drive frame may be disposed within the proof mass. The drive beams may constrain the drive frame to rotate substantially in the plane of the drive beams. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: November 19, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra Vaman Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20130278542
    Abstract: A touch sensor may include a digital resistive touch (DRT) sensor architecture that is substantially free of air gaps. The DRT touch sensor may include a layer of force-sensitive resistor (FSR) material on an array of row and column electrodes. The electrodes may be formed on a substantially transparent substrate. Near the intersection of each row and column, one or more thin transparent patterned conductive bridges may be situated above the FSR. The conductive bridges may be configured for electrical connection with row and column electrodes when force is applied to the conductive bridge or surface of the touch sensor. Some touch sensors may include both DRT and projected capacitive touch (PCT) functionality.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Philip Jason Stephanou, Nicholas Ian Buchan, David William Burns, Kristopher Andrew Lavery, Srinivasan Kodaganallur Ganapathi
  • Patent number: 8516887
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a central anchor, a sense frame disposed around the central anchor, a plurality of sense beams configured for connecting the sense frame to the central anchor and a drive frame disposed around and coupled to the sense frame. The gyroscope may include pairs of drive beams disposed on opposing sides of the sense frame. The gyroscope may include a drive frame suspension for substantially restricting a drive motion of the drive frame to that of a substantially linear displacement along the first axis. The sense frame may be substantially decoupled from drive motions of the drive frame. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 27, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra Vaman Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Patent number: 8516886
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a sense frame, a proof mass disposed outside the sense frame, a pair of anchors and a plurality of drive beams. The plurality of drive beams may be disposed on opposing sides of the sense frame and between the pair of anchors. The drive beams may connect the sense frame to the proof mass. The drive beams may be configured to cause torsional oscillations of the proof mass substantially in a first plane of the drive beams. The sense frame may be substantially decoupled from the drive motions of the proof mass. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 27, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra Vaman Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20130162657
    Abstract: This disclosure provides systems, methods and apparatus for masked reflective structures which can be integrated into display devices. In one aspect, masks and etch leading layers can be used to control the etching of a stack of layers to form masked reflective structures having a desired profile. In particular, tapered edges at a particular angle can be formed, and the resulting structures used in a roll-to-roll process to fabricate a device component.
    Type: Application
    Filed: September 21, 2012
    Publication date: June 27, 2013
    Inventors: Ming-Hau Tung, Srinivasan Kodaganallur Ganapathi
  • Publication number: 20130050227
    Abstract: This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass. The cover glass may be bonded to the glass substrate with an adhesive such as an epoxy, or a metal bond ring. The glass package also may include one or more signal transmission pathways between the one or more devices and the package exterior. In some implementations, a glass package including an EMS and/or IC device is configured to be directly attached to a printed circuit board (PCB) or other integration substrate by surface mount technology.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Kurt Edward Petersen, Ravindra V. Shenoy, Justin Phelps Black, David William Burns, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Nicholas Ian Buchan
  • Publication number: 20130050228
    Abstract: This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, fabricating a glass package includes joining a cover glass panel to a glass substrate panel, and singulating the joined panels to form individual glass packages, each including one or more encapsulated devices and one or more signal transmission pathways. In another aspect, a glass package may include a glass substrate, a cover glass and one or more devices encapsulated between the glass substrate and the cover glass.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Kurt Edward Petersen, Ravindra V. Shenoy, Justin Phelps Black, David William Burns, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Nicholas Ian Buchan
  • Publication number: 20130050155
    Abstract: This disclosure provides systems, methods and apparatus for glass packaging of integrated circuit (IC) and electromechanical systems (EMS) devices. In one aspect, a glass package may include a glass substrate, a cover glass, one or more devices encapsulated between the glass substrate and the cover glass, and bond pads configured to attach to a flexible connector and in electrical communication with an encapsulated device. In some implementations, a flexible connector may be used to electrically connect a device within the glass package to an electrical component, such as an integrated circuit (IC) device or PCB, outside the glass package.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Kurt Edward Petersen, Ravindra V. Shenoy, Justin Phelps Black, David William Burns, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Nicholas Ian Buchan