Patents by Inventor Srivatsa G. Kundalgurki

Srivatsa G. Kundalgurki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9897564
    Abstract: One embodiment of making a diode includes forming a first electrode to which an electric field is applied; forming a second electrode to which the electric field is applied; and forming a vapor gap region between the first electrode and the second electrode. A total capacitance measured between the first electrode and the second electrode varies based on presence of a polar vapor species on at least a portion of an electrode surface of at least one of the first electrode and the second electrode.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 20, 2018
    Assignee: NXP USA, Inc.
    Inventor: Srivatsa G. Kundalgurki
  • Patent number: 9663356
    Abstract: A method of making a microelectromechanical systems (MEMS) device includes etching away a sacrificial material layer to release a mechanical element of the MEMS device. The MEMS device is formed at least partially on the sacrificial material layer, and the etching leaves a residue in proximity to the mechanical element. The residue is exposed to an anhydrous solution to remove the residue. The residue may be an ammonium fluorosilicate-based residue, and the anhydrous solution may include acetic acid, isopropyl alcohol, acetone, or any anhydrous solution that can effectively dissolve the ammonium fluorosilicate-based residue.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Srivatsa G. Kundalgurki, Ruben B. Montez, Gary Pfeffer
  • Patent number: 9658180
    Abstract: The present disclosure provides embodiments for diodes, devices, and methods for polar vapor sensing. One embodiment of a diode includes a first electrode to which an electric field is applied; a second electrode to which the electric field is applied; and a vapor gap region between the first electrode and the second electrode. A total capacitance measured between the first electrode and the second electrode varies based on presence of a polar vapor species on at least a portion of an electrode surface of at least one of the first electrode and the second electrode.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: May 23, 2017
    Assignee: NXP USA, Inc.
    Inventor: Srivatsa G. Kundalgurki
  • Patent number: 9658199
    Abstract: A method for determining the concentration of an analyte is provided. The method comprises: applying an alternating voltage to a first electrode and a second electrode of a sensor in the presence of the analyte; measuring a first capacitance of the sensor in presence of the analyte; irradiating the analyte for a predetermined time period at a discrete frequency within a predetermined frequency range; measuring a second capacitance of the sensor at an end of the predetermined time period; determining a difference between the first and second capacitances; and determining the concentration of the analyte based on the difference. Also, the method includes determining a composition of an analyte. The discrete frequency is associated with the difference to determine a frequency response. The frequency response is used to determine the composition of the analyte.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: May 23, 2017
    Assignee: NXP USA, Inc.
    Inventor: Srivatsa G. Kundalgurki
  • Patent number: 9583665
    Abstract: A diode for detecting the presence of radiation includes a P region, an N region, an intrinsic region located between the P region and the N region, and a layer of nanoclusters located adjacent to the intrinsic region.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: February 28, 2017
    Assignee: NXP USA, Inc.
    Inventor: Srivatsa G. Kundalgurki
  • Publication number: 20170045467
    Abstract: One embodiment of making a diode includes forming a first electrode to which an electric field is applied; forming a second electrode to which the electric field is applied; and forming a vapor gap region between the first electrode and the second electrode. A total capacitance measured between the first electrode and the second electrode varies based on presence of a polar vapor species on at least a portion of an electrode surface of at least one of the first electrode and the second electrode.
    Type: Application
    Filed: October 28, 2016
    Publication date: February 16, 2017
    Inventor: Srivatsa G. KUNDALGURKI
  • Publication number: 20160238580
    Abstract: A method for determining the concentration of an analyte is provided. The method comprises: applying an alternating voltage to a first electrode and a second electrode of a sensor in the presence of the analyte; measuring a first capacitance of the sensor in presence of the analyte; irradiating the analyte for a predetermined time period at a discrete frequency within a predetermined frequency range; measuring a second capacitance of the sensor at an end of the predetermined time period; determining a difference between the first and second capacitances; and determining the concentration of the analyte based on the difference. Also, the method includes determining a composition of an analyte. The discrete frequency is associated with the difference to determine a frequency response. The frequency response is used to determine the composition of the analyte.
    Type: Application
    Filed: August 27, 2015
    Publication date: August 18, 2016
    Inventor: SRIVATSA G. KUNDALGURKI
  • Publication number: 20160238551
    Abstract: The present disclosure provides embodiments for diodes, devices, and methods for polar vapor sensing. One embodiment of a diode includes a first electrode to which an electric field is applied; a second electrode to which the electric field is applied; and a vapor gap region between the first electrode and the second electrode. A total capacitance measured between the first electrode and the second electrode varies based on presence of a polar vapor species on at least a portion of an electrode surface of at least one of the first electrode and the second electrode.
    Type: Application
    Filed: February 18, 2015
    Publication date: August 18, 2016
    Inventor: SRIVATSA G. KUNDALGURKI
  • Publication number: 20160071997
    Abstract: A diode for detecting the presence of radiation includes a P region, an N region, an intrinsic region located between the P region and the N region, and a layer of nanoclusters located adjacent to the intrinsic region.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Inventor: SRIVATSA G. KUNDALGURKI
  • Publication number: 20150368099
    Abstract: A method of making a microelectromechanical systems (MEMS) device includes etching away a sacrificial material layer to release a mechanical element of the MEMS device. The MEMS device is formed at least partially on the sacrificial material layer, and the etching leaves a residue in proximity to the mechanical element. The residue is exposed to an anhydrous solution to remove the residue. The residue may be an ammonium fluorosilicate-based residue, and the anhydrous solution may include acetic acid, isopropyl alcohol, acetone, or any anhydrous solution that can effectively dissolve the ammonium fluorosilicate-based residue.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 24, 2015
    Inventors: Srivatsa G. Kundalgurki, Ruben B. Montez, Gary Pfeffer
  • Patent number: 8993451
    Abstract: Etch stabilizing ions (37) are introduced, e.g., by ion implantation (34), into a portion (36) of a substrate (20) underlying an etch window (24) in a masking layer (22) covering the substrate (20), where a trench (26) is desired to be formed. When the portion (36) of the substrate (20) containing the etch stabilizing ions (37) is etched to form the trench (26), the etch stabilizing ions (37) are progressively released at the etch interface (28?) as etching proceeds, substantially preventing gas micro-bubbles or other reaction products at the etch interface (28?) from disrupting etching. Using this method (700), products containing trenches (26) are much more easily formed and such trenches (26) have much smoother interior surface (28).
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 31, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srivatsa G. Kundalgurki, James F. McHugh
  • Patent number: 8709848
    Abstract: MEMS devices (40) using etched cavities (42) are desirably formed using multiple etching steps. Preliminary cavities (20) formed by locally anisotropic etching to nearly the final depth have irregular (46) sidewalls (44) and steep and/or inconsistent sidewall (44) to bottom (54) intersection angles (48). This leads to less than desired cavity diaphragm (26) burst strengths. Final cavities (42) with smooth sidewalls (50), smaller and consistent sidewall (50) to bottom (54) intersection angles (58), and having more than doubled cavity diaphragm (26) burst strengths are obtained by treating the preliminary cavities (20) with TMAH etchant, preferably relatively dilute TMAH etchant. In a preferred embodiment, a cleaning step is performed between the etching step and the TMAH treatment step to remove any anisotropic etching by-products present on the preliminary cavities' (20) initial sidewalls (44).
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srivatsa G. Kundalgurki, Scott Dye
  • Publication number: 20130313668
    Abstract: A photronic device includes a substrate having an opening through the substrate. The photronic device further includes an insulating layer over the substrate including over the opening. The photronic device further includes an active layer over the insulating layer. The photronic device further includes a photoactive device formed in the active layer, wherein the photoactive device is over the opening. The photronic device further includes active electronic circuitry formed in the active layer. The photronic device further includes a reflective layer on the insulating layer in the opening.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Inventors: Gregory S. Spencer, John R. Alvis, Hsiao-Hui Chen, Joseph F. Orcutt, Srivatsa G. Kundalgurki
  • Publication number: 20120264307
    Abstract: Etch stabilizing ions (37) are introduced, e.g., by ion implantation (34), into a portion (36) of a substrate (20) underlying an etch window (24) in a masking layer (22) covering the substrate (20), where a trench (26) is desired to be formed. When the portion (36) of the substrate (20) containing the etch stabilizing ions (37) is etched to form the trench (26), the etch stabilizing ions (37) are progressively released at the etch interface (28?) as etching proceeds, substantially preventing gas micro-bubbles or other reaction products at the etch interface (28?) from disrupting etching. Using this method (700), products containing trenches (26) are much more easily formed and such trenches (26) have much smoother interior surface (28).
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Srivatsa G. Kundalgurki, James F. McHugh
  • Publication number: 20120264249
    Abstract: MEMS devices (40) using etched cavities (42) are desirably formed using multiple etching steps. Preliminary cavities (20) formed by locally anisotropic etching to nearly the final depth have irregular (46) sidewalls (44) and steep and/or inconsistent sidewall (44) to bottom (54) intersection angles (48). This leads to less than desired cavity diaphragm (26) burst strengths. Final cavities (42) with smooth sidewalls (50), smaller and consistent sidewall (50) to bottom (54) intersection angles (58), and having more than doubled cavity diaphragm (26) burst strengths are obtained by treating the preliminary cavities (20) with TMAH etchant, preferably relatively dilute TMAH etchant. In a preferred embodiment, a cleaning step is performed between the etching step and the TMAH treatment step to remove any anisotropic etching by-products present on the preliminary cavities' (20) initial sidewalls (44).
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Srivatsa G. Kundalgurki, Scott Dye