Patents by Inventor Stanislav Gudkov

Stanislav Gudkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904528
    Abstract: A 3D printing apparatus can include a base composite material channel configured to pass a base composite material therethrough, a fiber strand channel configured to pass a fiber strand therethrough, and a fiber feeding component configured to feed the fiber strand through the fiber channel. The fiber strand can be separate from the base composite material before entering the 3D printing apparatus, and the fiber feeding component can facilitate combining of the fiber strand with the base composite material to form a layer of a 3D printed building component with the fiber strand within the base composite material. An impregnation material channel may be included to pass an impregnation liquid or material to impregnate the fiber strand while the fiber strand is within the 3D printing apparatus.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: February 20, 2024
    Assignee: Mighty Buildings, Inc.
    Inventors: Vasily Korshikov, Anna Ivanova, Egor Yakovlev, Maxim Bobryshev, Vasiliy Chekhotsiy, Sergei Naumov, Alexey Dubov, Dmitry Starodubtsev, Evald Lepp, Stanislav Gudkov
  • Patent number: 11654611
    Abstract: Systems and methods for monitoring stress in 3D-printed building structures using embedded and surface sensors. The sensors may be embedded during or after the 3D printing process. The sensors may be strain gauges integrally formed in the 3D-printed building structure or positioned on the surface of the 3D-printed building structure. The embedded and surface sensors may measure tensile and compressive deformation occurring during the printing process, material relaxation process, the transportation process, and at a final location of the 3D-printed building structure. Deformation data collected by the sensors may be compared to accepted threshold values based on the material of the 3D-printed building structure.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: May 23, 2023
    Assignee: Mighty Buildings, Inc.
    Inventors: Stanislav Gudkov, Aleksei Dubov, Evgeniy Ostanin
  • Publication number: 20230036241
    Abstract: Systems and methods for monitoring stress in 3D-printed building structures using embedded and surface sensors. The sensors may be embedded during or after the 3D printing process. The sensors may be strain gauges integrally formed in the 3D-printed building structure or positioned on the surface of the 3D-printed building structure. The embedded and surface sensors may measure tensile and compressive deformation occurring during the printing process, material relaxation process, the transportation process, and at a final location of the 3D-printed building structure. Deformation data collected by the sensors may be compared to accepted threshold values based on the material of the 3D-printed building structure.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Stanislav Gudkov, Aleksei Dubov, Evgeniy Ostanin
  • Publication number: 20220266516
    Abstract: A 3D printing apparatus can include a base composite material channel configured to pass a base composite material therethrough, a fiber strand channel configured to pass a fiber strand therethrough, and a fiber feeding component configured to feed the fiber strand through the fiber channel. The fiber strand can be separate from the base composite material before entering the 3D printing apparatus, and the fiber feeding component can facilitate combining of the fiber strand with the base composite material to form a layer of a 3D printed building component with the fiber strand within the base composite material. An impregnation material channel may be included to pass an impregnation liquid or material to impregnate the fiber strand while the fiber strand is within the 3D printing apparatus.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 25, 2022
    Inventors: Vasily Korshikov, Anna Ivanova, Egor Yakovlev, Maxim Bobryshev, Vasiliy Chekhotsiy, Sergei Naumov, Alexey Dubov, Dmitry Starodubtsev, Evald Lepp, Stanislav Gudkov