Patents by Inventor Stefaan Decoutere

Stefaan Decoutere has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11380789
    Abstract: A vertical power device is disclosed, the device having a top side and a bottom side, and the device comprising (i) a substrate; (ii) a layered group III-Nitride based device stack formed atop the substrate; (iii) a first vertical group III-Nitride based device and a second vertical group III-Nitride based device formed in the group III-Nitride based device stack, wherein the first vertical group III-Nitride based device and the second vertical group III-Nitride based device are electrically connected; and (iv) a first vertical device isolation structure that isolates the first vertical group III-Nitride based device from the second vertical group III-Nitride based device. Also disclosed are a vertical power system integrating vertical power devices and a process for fabricating a vertical power device.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: July 5, 2022
    Assignee: IMEC VZW
    Inventors: Steve Stoffels, Stefaan Decoutere
  • Publication number: 20220181159
    Abstract: A method includes providing a semiconductor structure including: a substrate; a layer stack with each layer of the layer stack including a Group III-nitride material; and a p-type doped GaN layer on the layer stack. The method also includes providing, on the GaN layer, a metal bi-layer including a first metal layer in contact with GaN layer and a second metal layer on the first metal layer and having a lower sheet resistance than the first metal layer. The method also includes performing a patterning process upon the metal bi-layer and the p-type doped GaN layer such that a first periphery of the first metal layer is aligned to a second periphery of the second metal layer and such that a first cross section of the metal bi-layer is smaller than a second cross section of the GaN layer parallel to the first cross section.
    Type: Application
    Filed: June 11, 2021
    Publication date: June 9, 2022
    Inventors: Niels Posthuma, Stefaan Decoutere
  • Patent number: 11094629
    Abstract: A three-dimensional (3D) power device having a plurality of layers that are stacked on top of each other and insulated from each other by interlayers, the plurality of layers comprising a lower layer comprising electrical and thermal conductors; a group III-Nitride based device layer formed above the lower layer, the group III-Nitride based device layer comprising at least one group III-Nitride based power device; a control layer formed above the group III-Nitride based device layer, the control layer comprising at least one control device; and a redistribution layer in between the group III-Nitride based device layer and the control layer, the current redistribution layer comprising a metal pattern being provided for laterally redistributing electrical currents and/or heat.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 17, 2021
    Assignee: IMEC VZW
    Inventors: Stefaan Decoutere, Steve Stoffels
  • Publication number: 20200243678
    Abstract: A vertical power device is disclosed, the device having a top side and a bottom side, and the device comprising (i) a substrate; (ii) a layered group III-Nitride based device stack formed atop the substrate; (iii) a first vertical group III-Nitride based device and a second vertical group III-Nitride based device formed in the group III-Nitride based device stack, wherein the first vertical group III-Nitride based device and the second vertical group III-Nitride based device are electrically connected; and (iv) a first vertical device isolation structure that isolates the first vertical group III-Nitride based device from the second vertical group III-Nitride based device. Also disclosed are a vertical power system integrating vertical power devices and a process for fabricating a vertical power device.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 30, 2020
    Inventors: Steve Stoffels, Stefaan Decoutere
  • Publication number: 20200203274
    Abstract: A three-dimensional (3D) power device having a plurality of layers that are stacked on top of each other and insulated from each other by interlayers, the plurality of layers comprising a lower layer comprising electrical and thermal conductors; a group III-Nitride based device layer formed above the lower layer, the group III-Nitride based device layer comprising at least one group III-Nitride based power device; a control layer formed above the group III-Nitride based device layer, the control layer comprising at least one control device; and a redistribution layer in between the group III-Nitride based device layer and the control layer, the current redistribution layer comprising a metal pattern being provided for laterally redistributing electrical currents and/or heat.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 25, 2020
    Inventors: Stefaan Decoutere, Steve Stoffels
  • Patent number: 9711601
    Abstract: The disclosed technology relates to a device including a diode. In one aspect, the device includes a lower group III metal nitride layer and an upper group III metal nitride layer and a heterojunction formed therebetween, where the heterojunction extends horizontally and is configured to form a two-dimensional electron gas (2DEG) that is substantially confined in a vertical direction and within the lower group III metal nitride layer. The device additionally includes a cathode forming an ohmic contact with the upper group III metal nitride layer. The device additionally includes an anode, which includes a first portion that forms a Schottky barrier contact with the upper group III metal nitride layer, and a second portion that is separated vertically from the upper group III metal nitride layer by a layer of dielectric material.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: July 18, 2017
    Assignee: IMEC
    Inventors: Stefaan Decoutere, Nicolo Ronchi
  • Patent number: 9634107
    Abstract: The disclosure relates to a method for manufacturing an Au-free ohmic contact for an III-nitride (III-N) device on a semiconductor substrate and to a III-N device obtainable therefrom. The III-N device includes a buffer layer, a channel layer, a barrier layer, and a passivation layer. A 2DEG layer is formed at an interface between the channel layer and the barrier layer. The method includes forming a recess in the passivation layer and in the barrier layer up to the 2DEG layer, and forming an Au-free metal stack in the recess. The metal stack comprises a Ti/Al bi-layer, with a Ti layer overlying and in contact with a bottom of the recess, and a Al layer overlying and in contact with the Ti layer. A thickness ratio of the Ti layer to the Al layer is between 0.01 to 0.1. After forming the metal stack, a rapid thermal anneal is performed. Optionally, prior to forming the Ti/Al bi-layer, a silicon layer may be formed in contact with the recess.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 25, 2017
    Assignee: IMEC
    Inventors: Brice De Jaeger, Marleen Van Hove, Stefaan Decoutere, Steve Stoffels
  • Patent number: 9431511
    Abstract: A semiconductor device includes a Schottky diode and a High Electron Mobility Transistor (HEMT) formed on a III-nitride stack. The III-nitride stack includes at least a lower and an upper III-nitride layer forming a heterojunction therebetween, so that a 2-dimensional electron gas (2DEG) layer may be formed in the lower layer. The 2DEG layer serves as a charge carrier for the diode and the HEMT. A doped III-nitride layer may be present between a portion of the anode of the diode and the III-nitride stack, and the portion may be located between the diode's Schottky junction and the cathode. A further layer of doped III-nitride material may be present between the gate electrode of the HEMT and the III-nitride stack. The thickness of the III-nitride layers is not equal, so that the turn-on voltage of the diode and the threshold voltage of the HEMT may be tuned according to specific requirements. The disclosure also involves a method of producing such a semiconductor device.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: August 30, 2016
    Assignee: IMEC
    Inventors: Stefaan Decoutere, Silvia Lenci
  • Patent number: 9425281
    Abstract: Enhancement mode III-nitride HEMT and method for manufacturing an enhancement mode III-nitride HEMT are disclosed. In one aspect, the method includes providing a substrate having a stack of layers on the substrate, each layer including a III-nitride material, and a passivation layer having high temperature silicon nitride overlying and in contact with an upper layer of the stack of III-nitride layers, wherein the HT silicon nitride is formed by MOCVD or LPCVD or any equivalent technique at a temperature higher than about 450° C. The method also includes forming a recessed gate region by removing the passivation layer only in the gate region, thereby exposing the underlying upper layer. The method also includes forming a p-doped GaN layer at least in the recessed gate region, thereby filling at least partially the recessed gate region, and forming a gate contact and source/drain contacts.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 23, 2016
    Assignee: IMEC
    Inventor: Stefaan Decoutere
  • Publication number: 20160163695
    Abstract: An integrated circuit comprising a first III-N transistor having a source region and a second III-N transistor having a source region, both transistors being monolithically integrated on a common silicon substrate of a first doping type and separated from each-other by an isolation region, the substrate comprising underneath the first transistor a well of a first doping type electrically connected to the source region of the first transistor and comprising underneath the second transistor a well of a second doping type electrically connected to the source region of the second transistor, thereby forming a junction diode in the substrate between the sources of the first and the second transistor.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 9, 2016
    Applicant: IMEC VZW
    Inventors: Stefaan Decoutere, Niels Posthuma, Shuzhen You
  • Patent number: 9276082
    Abstract: A semiconductor device includes a Schottky diode and a High Electron Mobility Transistor (HEMT) formed on a III-nitride stack. The III-nitride stack includes at least a lower and an upper III-nitride layer forming a heterojunction therebetween, so that a 2-dimensional electron gas (2DEG) layer may be formed in the lower layer. The 2DEG layer serves as a charge carrier for the diode and the HEMT. A doped III-nitride layer may be present between a portion of the anode of the diode and the III-nitride stack, and the portion may be located between the diode's Schottky junction and the cathode. A further layer of doped III-nitride material may be present between the gate electrode of the HEMT and the III-nitride stack. The thickness of the III-nitride layers is not equal, so that the turn-on voltage of the diode and the threshold voltage of the HEMT may be tuned according to specific requirements. The disclosure also involves a method of producing such a semiconductor device.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: March 1, 2016
    Assignee: IMEC
    Inventors: Stefaan Decoutere, Silvia Lenci
  • Publication number: 20150318374
    Abstract: Enhancement mode III-nitride HEMT and method for manufacturing an enhancement mode III-nitride HEMT are disclosed. In one aspect, the method includes providing a substrate having a stack of layers on the substrate, each layer including a III-nitride material, and a passivation layer having high temperature silicon nitride overlying and in contact with an upper layer of the stack of III-nitride layers, wherein the HT silicon nitride is formed by MOCVD or LPCVD or any equivalent technique at a temperature higher than about 450° C. The method also includes forming a recessed gate region by removing the passivation layer only in the gate region, thereby exposing the underlying upper layer. The method also includes forming a p-doped GaN layer at least in the recessed gate region, thereby filling at least partially the recessed gate region, and forming a gate contact and source/drain contacts.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 5, 2015
    Inventor: Stefaan Decoutere
  • Publication number: 20150214327
    Abstract: A semiconductor device includes a Schottky diode and a High Electron Mobility Transistor (HEMT) formed on a III-nitride stack. The III-nitride stack includes at least a lower and an upper III-nitride layer forming a heterojunction therebetween, so that a 2-dimensional electron gas (2DEG) layer may be formed in the lower layer. The 2DEG layer serves as a charge carrier for the diode and the HEMT. A doped III-nitride layer may be present between a portion of the anode of the diode and the III-nitride stack, and the portion may be located between the diode's Schottky junction and the cathode. A further layer of doped III-nitride material may be present between the gate electrode of the HEMT and the III-nitride stack. The thickness of the III-nitride layers is not equal, so that the turn-on voltage of the diode and the threshold voltage of the HEMT may be tuned according to specific requirements. The disclosure also involves a method of producing such a semiconductor device.
    Type: Application
    Filed: April 9, 2015
    Publication date: July 30, 2015
    Applicant: IMEC
    Inventors: Stefaan Decoutere, Silvia Lenci
  • Patent number: 9041149
    Abstract: The invention relates to a semiconductor device (30) comprising a substrate (1), a semiconductor body (25) comprising a bipolar transistor that comprises a collector region (3), a base region (4), and an emitter region (15), wherein at least a portion of the collector region (3) is surrounded by a first isolation region (2, 8), the semiconductor body (25) further comprises an extrinsic base region (35) arranged in contacting manner to the base region (4). In this way, a fast semiconductor device with reduced impact of parasitic components is obtained.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 26, 2015
    Assignee: NXP, B.V.
    Inventors: Guillaume Boccardi, Mark C. J. C. M. Kramer, Johannes J. T. M. Donkers, Li Jen Choi, Stefaan Decoutere, Arturo Sibaja-Hernandez, Stefaan Van Huylenbroeck, Rafael Venegas
  • Patent number: 8916962
    Abstract: Disclosed are semiconductor devices and methods for manufacturing them. An example device may include a III-nitride stack having a front side surface and a back side surface. The III-nitride stack may be formed of at least a first layer and a second layer, between which a heterojunction may be formed, such that a two-dimensional electron gas layer is formed in the second layer. A source electrode, a drain electrode, and a gate electrode positioned between the source and drain electrodes may be formed on the front side surface, and an insulation layer may be formed over the electrodes on the front side surface. A carrier substrate may be attached to the insulation layer. An electrically conductive back plate may be formed on the back side surface. The back plate may directly face the source electrode and the gate electrode, but not the drain electrode.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: December 23, 2014
    Assignee: IMEC
    Inventors: Sylvia Lenci, Stefaan Decoutere
  • Publication number: 20140346568
    Abstract: The disclosure relates to a method for manufacturing an Au-free ohmic contact for an III-nitride (III-N) device on a semiconductor substrate and to a III-N device obtainable therefrom. The III-N device includes a buffer layer, a channel layer, a barrier layer, and a passivation layer. A 2DEG layer is formed at an interface between the channel layer and the barrier layer. The method includes forming a recess in the passivation layer and in the barrier layer up to the 2DEG layer, and forming an Au-free metal stack in the recess. The metal stack comprises a Ti/Al bi-layer, with a Ti layer overlying and in contact with a bottom of the recess, and a Al layer overlying and in contact with the Ti layer. A thickness ratio of the Ti layer to the Al layer is between 0.01 to 0.1. After forming the metal stack, a rapid thermal anneal is performed. Optionally, prior to forming the Ti/Al bi-layer, a silicon layer may be formed in contact with the recess.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: IMEC
    Inventors: Brice De Jaeger, Marleen Van Hove, Stefaan Decoutere
  • Publication number: 20140306235
    Abstract: A semiconductor device includes a Schottky diode and a High Electron Mobility Transistor (HEMT) formed on a III-nitride stack. The III-nitride stack includes at least a lower and an upper III-nitride layer forming a heterojunction therebetween, so that a 2-dimensional electron gas (2DEG) layer may be formed in the lower layer. The 2DEG layer serves as a charge carrier for the diode and the HEMT. A doped III-nitride layer may be present between a portion of the anode of the diode and the III-nitride stack, and the portion may be located between the diode's Schottky junction and the cathode. A further layer of doped III-nitride material may be present between the gate electrode of the HEMT and the III-nitride stack. The thickness of the III-nitride layers is not equal, so that the turn-on voltage of the diode and the threshold voltage of the HEMT may be tuned according to specific requirements. The disclosure also involves a method of producing such a semiconductor device.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 16, 2014
    Applicant: IMEC
    Inventors: Stefaan Decoutere, Silvia Lenci
  • Publication number: 20140159118
    Abstract: Disclosed are semiconductor devices and methods for manufacturing them. An example device may include a III-nitride stack having a front side surface and a back side surface. The III-nitride stack may be formed of at least a first layer and a second layer, between which a heterojunction may be formed, such that a two-dimensional electron gas layer is formed in the second layer. A source electrode, a drain electrode, and a gate electrode positioned between the source and drain electrodes may be formed on the front side surface, and an insulation layer may be formed over the electrodes on the front side surface. A carrier substrate may be attached to the insulation layer. An electrically conductive back plate may be formed on the back side surface. The back plate may directly face the source electrode and the gate electrode, but not the drain electrode.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 12, 2014
    Applicant: IMEC
    Inventors: Sylvia Lenci, Stefaan Decoutere
  • Publication number: 20140103357
    Abstract: The disclosed technology relates to a device including a diode. In one aspect, the device includes a lower group III metal nitride layer and an upper group III metal nitride layer and a heterojunction formed therebetween, where the heterojunction extends horizontally and is configured to form a two-dimensional electron gas (2DEG) that is substantially confined in a vertical direction and within the lower group III metal nitride layer. The device additionally includes a cathode forming an ohmic contact with the upper group III metal nitride layer. The device additionally includes an anode, which includes a first portion that forms a Schottky barrier contact with the upper group III metal nitride layer, and a second portion that is separated vertically from the upper group III metal nitride layer by a layer of dielectric material.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 17, 2014
    Applicant: IMEC
    Inventors: STEFAAN DECOUTERE, Nicolo Ronchi
  • Publication number: 20110198671
    Abstract: The invention relates to a semiconductor device (30) comprising a substrate (1), a semiconductor body (25) comprising a bipolar transistor that comprises a collector region (3), a base region (4), and an emitter region (15), wherein at least a portion of the collector region (3) is surrounded by a first isolation region (2, 8), the semiconductor body (25) further comprises an extrinsic base region (35) arranged in contacting manner to the base region (4). In this way, a fast semiconductor device with reduced impact of parasitic components is obtained.
    Type: Application
    Filed: August 5, 2009
    Publication date: August 18, 2011
    Applicants: NXP B.V., INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM VZW
    Inventors: Guillaume Boccardi, Mark C. J. C. M. Kramer, Johannes J. T. M. Donkers, Li Jen Choi, Stefaan Decoutere, Arturo Sibaja-Hernandez, Stefaan Van Huylenbroeck, Rafael Venegas