Patents by Inventor Stefan Duhr

Stefan Duhr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11307128
    Abstract: The present invention relates to a method for the optical measurement of at least the stability and the aggregation of particles in a liquid sample which is located in a sample container, wherein the method comprises the following steps: irradiating the sample with light of at least one first wavelength in order to fluorescently excite the particles, irradiating the sample with light of at least one second wavelength in order to examine the scattering of the particles, measuring the fluorescence light which is emitted by the sample; and measuring the extinction light at the second wavelength, wherein the irradiated light of the second wavelength runs through the sample container, is reflected back, runs again through the sample container in the opposite direction and exits as extinction light, wherein the stability is determined based on the measured fluorescence light and the aggregation is measured based on the measured extinction light. The invention further relates to a corresponding apparatus.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: April 19, 2022
    Assignee: NanoTemper Technologies GmbH
    Inventors: Philipp Baaske, Stefan Duhr, Dennis Breitsprecher, Jonathan Derix
  • Patent number: 11099192
    Abstract: The present invention relates to a method and an apparatus for a fast thermo-optical characterisation of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 24, 2021
    Assignee: NanoTemper Technologies GmbH
    Inventors: Stefan Duhr, Philipp Baaske
  • Publication number: 20210102879
    Abstract: The present invention relates to a method for the optical measurement of at least the stability and the aggregation of particles in a liquid sample which is located in a sample container, wherein the method comprises the following steps: irradiating the sample with light of at least one first wavelength in order to fluorescently excite the particles, irradiating the sample with light of at least one second wavelength in order to examine the scattering of the particles, measuring the fluorescence light which is emitted by the sample; and measuring the extinction light at the second wavelength, wherein the irradiated light of the second wavelength runs through the sample container, is reflected back, runs again through the sample container in the opposite direction and exits as extinction light, wherein the stability is determined based on the measured fluorescence light and the aggregation is measured based on the measured extinction light. The invention further relates to a corresponding apparatus.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Inventors: Philipp Baaske, Stefan Duhr, Dennis Breitsprecher, Jonathan Derix
  • Patent number: 10900879
    Abstract: The present invention relates to a method for the optical measurement of at least the stability and the aggregation of particles in a liquid sample which is located in a sample container, wherein the method comprises the following steps: irradiating the sample with light of at least one first wavelength in order to fluorescently excite the particles, irradiating the sample with light of at least one second wavelength in order to examine the scattering of the particles, measuring the fluorescence light which is emitted by the sample; and measuring the extinction light at the second wavelength, wherein the irradiated light of the second wavelength runs through the sample container, is reflected back, runs again through the sample container in the opposite direction and exits as extinction light, wherein the stability is determined based on the measured fluorescence light and the aggregation is measured based on the measured extinction light. The invention further relates to a corresponding apparatus.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: January 26, 2021
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Philipp Baaske, Stefan Duhr, Dennis Breitsprecher, Jonathan Derix
  • Publication number: 20200278351
    Abstract: A method for measuring interactions between labeled particles and ligands comprising the steps: a) providing a sample comprising labeled particles and ligands in a solution, wherein the labeled particles are dissolved or dispersed in the solution or are immobilized on a solid support; b) exciting fluorescently the labeled particles and detecting the fluorescence of the excited particles at a predetermined temperature; c) repeating steps (a) and (b) multiple times at different concentrations of the ligands in the solution; and d) determining the interaction between the labeled particles and the ligands based on the ligand concentration dependent change of the fluorescence of the labeled particles, wherein the labeled particles are labeled with one or more dyes.
    Type: Application
    Filed: June 22, 2018
    Publication date: September 3, 2020
    Applicant: NanoTemper Technologies GmbH
    Inventors: Philipp BAASKE, Stefan DUHR, Dennis BREITSPRECHER, Christian OSSEFORTH, Axel ROHDE, Amin Jean GUPTA, Nuska TSCHAMMER
  • Publication number: 20200158614
    Abstract: The present invention relates to a method for the optical measurement of at least the stability and the aggregation of particles in a liquid sample which is located in a sample container, wherein the method comprises the following steps: irradiating the sample with light of at least one first wavelength in order to fluorescently excite the particles, irradiating the sample with light of at least one second wavelength in order to examine the scattering of the particles, measuring the fluorescence light which is emitted by the sample; and measuring the extinction light at the second wavelength, wherein the irradiated light of the second wavelength runs through the sample container, is reflected back, runs again through the sample container in the opposite direction and exits as extinction light, wherein the stability is determined based on the measured fluorescence light and the aggregation is measured based on the measured extinction light. The invention further relates to a corresponding apparatus.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Philipp Baaske, Stefan Duhr, Dennis Breitsprecher, Jonathan Derix
  • Patent number: 10618051
    Abstract: The invention relates to a method for tempering a plurality of capillaries, which are arranged on a carrier, wherein the carrier having a length, width and height receives the capillaries along the width of the carrier. The carrier has a recess in order to receive a tempering element so that the capillaries may be tempered in their central region by means of contact with the tempering element. According to the invention, the ends of the capillaries filled with samples are unsealed during tempering.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: April 14, 2020
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Philipp Baaske, Stefan Duhr
  • Patent number: 10545081
    Abstract: The present invention relates to a method for the optical measurement of at least the stability and the aggregation of particles in a liquid sample which is located in a sample container, wherein the method comprises the following steps: irradiating the sample with light of at least one first wavelength in order to fluorescently excite the particles, irradiating the sample with light of at least one second wavelength in order to examine the scattering of the particles, measuring the fluorescence light which is emitted by the sample; and measuring the extinction light at the second wavelength, wherein the irradiated light of the second wavelength runs through the sample container, is reflected back, runs again through the sample container in the opposite direction and exits as extinction light, wherein the stability is determined based on the measured fluorescence light and the aggregation is measured based on the measured extinction light. The invention further relates to a corresponding apparatus.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 28, 2020
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Philipp Baaske, Stefan Duhr, Dennis Breitsprecher, Jonathan Derix
  • Patent number: 10488326
    Abstract: The invention relates to arrays with a plurality of capillaries being arranged in a plane and mechanically attached to the array, wherein the distance of adjacent capillaries is approximately 2.25 mm or an integer multiple thereof. At least one free end of each capillary projects from the array in such a way that the free ends of the capillaries may be simultaneously inserted into wells of a microwell plate.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: November 26, 2019
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Philipp Baaske, Stefan Duhr, Stefan Reichl, Hans-Jurgen Bigus
  • Publication number: 20190285641
    Abstract: The present invention relates to a method and an apparatus for a fast thermo-optical characterisation of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
    Type: Application
    Filed: May 29, 2019
    Publication date: September 19, 2019
    Applicant: NanoTemper Technologies GmbH
    Inventors: Stefan DUHR, Philipp BAASKE
  • Patent number: 10345312
    Abstract: The present invention relates to a method and an apparatus for a fast thermo-optical characterization of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: July 9, 2019
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Stefan Duhr, Philipp Baaske
  • Publication number: 20180284002
    Abstract: The present invention relates to a method for the optical measurement of at least the stability and the aggregation of particles in a liquid sample which is located in a sample container, wherein the method comprises the following steps: irradiating the sample with light of at least one first wavelength in order to fluorescently excite the particles, irradiating the sample with light of at least one second wavelength in order to examine the scattering of the particles, measuring the fluorescence light which is emitted by the sample; and measuring the extinction light at the second wavelength, wherein the irradiated light of the second wavelength runs through the sample container, is reflected back, runs again through the sample container in the opposite direction and exits as extinction light, wherein the stability is determined based on the measured fluorescence light and the aggregation is measured based on the measured extinction light. The invention further relates to a corresponding apparatus.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 4, 2018
    Applicant: Nano Temper Technologies GmbH
    Inventors: Philipp Baaske, Stefan Duhr, Dennis Breitsprecher, Jonathan Derix
  • Patent number: 9995684
    Abstract: The present invention relates generally to a system and a method for thermo-optical measurements in a droplet of aqueous solution comprising particles of interest, the method comprising the following steps: providing the droplet of aqueous solution with a volume of less than 200 nl, wherein the aqueous solution is a first liquid and at least a part of the particles of interest are fluorescent particles; embedding the droplet of aqueous solution at least partly in a second liquid; irradiating a laser light beam into the droplet to obtain a spatial temperature distribution in the droplet around the irradiated laser light beam; exciting fluorescently said fluorescent particles and detecting fluorescence at least at one position or at around one position in the droplet or detecting the fluorescence distribution of said fluorescently excited particles, wherein said detection of fluorescence is performed at least once at a predetermined time after the start of the laser irradiation; and determining a characteristic
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: June 12, 2018
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Susanne Seidel, Dieter Braun, Stefan Duhr, Philipp Baaske
  • Patent number: 9987604
    Abstract: The invention generally relates to an apparatus and a method for mixing of liquids (50) or of particles with a liquid (50). In a volume of liquid (50), a thermal convection flow is generated at at least one surface of the volume of liquid by irradiating IR radiation (30) into the volume of liquid. Thereby it is possible to avoid a depletion zone at the surface and to more accurately measure interactions of the particles with the surface by means of surface-based measurement methods.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 5, 2018
    Assignee: NANOTEMPER TECHNOLOGIES GMBH
    Inventors: Philipp Baaske, Stefan Duhr
  • Publication number: 20170361326
    Abstract: The invention relates to a method for tempering a plurality of capillaries, which are arranged on a carrier, wherein the carrier having a length, width and height receives the capillaries along the width of the carrier. The carrier has a recess in order to receive a tempering element so that the capillaries may be tempered in their central region by means of contact with the tempering element. According to the invention, the ends of the capillaries filled with samples are unsealed during tempering.
    Type: Application
    Filed: December 11, 2015
    Publication date: December 21, 2017
    Inventors: Philipp Baaske, Stefan Duhr
  • Publication number: 20170030921
    Abstract: The present invention relates to a method and an apparatus for a fast thermo-optical characterisation of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
    Type: Application
    Filed: September 1, 2016
    Publication date: February 2, 2017
    Applicant: Nano Temper Technologies GmbH
    Inventors: Stefan DUHR, Philipp BAASKE
  • Patent number: 9459211
    Abstract: The present invention relates to a method and an apparatus for a fast thermo-optical characterization of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: October 4, 2016
    Assignee: Nanotemper Technologies GmbH
    Inventors: Stefan Duhr, Philipp Baaske
  • Patent number: 9389211
    Abstract: The present invention relates to a device for investigating, measuring and/or detecting properties of chemical and/or biological fluids as well as to a device for performing these procedures and a system comprising a holder for holding at least one of said devices. A device for detecting properties of chemical and/or biological fluids may comprise a tubular structure with a cavity for accommodating the fluid, the tubular structure comprising a magnetizable and/or magnetic material, wherein the tubular structure comprises a segment that is transparent to light of wavelength 200 nm to 2000 nm.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: July 12, 2016
    Assignees: Nanotemper Technologies GmbH, Hirschmann Laborgerate GmbH & Co. KG
    Inventors: Stefan Duhr, Philipp Baaske, Hans-Jurgen Bigus
  • Publication number: 20150316480
    Abstract: The present invention relates generally to a system and a method for thermo-optical measurements in a droplet of aqueous solution comprising particles of interest, the method comprising the following steps: providing the droplet of aqueous solution with a volume of less than 200 nl, wherein the aqueous solution is a first liquid and at least a part of the particles of interest are fluorescent particles; embedding the droplet of aqueous solution at least partly in a second liquid; irradiating a laser light beam into the droplet to obtain a spatial temperature distribution in the droplet around the irradiated laser light beam; exciting fluorescently said fluorescent particles and detecting fluorescence at least at one position or at around one position in the droplet or detecting the fluorescence distribution of said fluorescently excited particles, wherein said detection of fluorescence is performed at least once at a predetermined time after the start of the laser irradiation; and determining a characteristic
    Type: Application
    Filed: November 5, 2014
    Publication date: November 5, 2015
    Inventors: Susanne Seidel, Dieter Braun, Stefan Duhr, Philipp Baaske
  • Publication number: 20150137005
    Abstract: The invention relates to arrays with a plurality of capillaries being arranged in a plane and mechanically attached to the array, wherein the distance of adjacent capillaries is approximately 2.25 mm or an integer multiple thereof. At least one free end of each capillary projects from the array in such a way that the free ends of the capillaries may be simultaneously inserted into wells of a microwell plate.
    Type: Application
    Filed: September 12, 2014
    Publication date: May 21, 2015
    Inventors: Philipp Baaske, Stefan Duhr, Stefan Reichl, Hans-Jurgen Bigus