Patents by Inventor Stefan Geyersberger

Stefan Geyersberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11343631
    Abstract: In processing a multi-channel audio signal having at least three original channels, first and second downmix channels derived from the original channels are provided. For a selected original channel of the original channels, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data to be transmitted to a low-level decoder, which only decodes the first and second downmix channels, or to a high-level decoder, which provides a full multi-channel audio signal based on the downmix channels and the channel side information.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: May 24, 2022
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Juergen Herre, Johannes Hilpert, Stefan Geyersberger, Andreas Hoelzer, Claus Spenger
  • Patent number: 11315583
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information is configured to obtain decoded spectral values on the basis of an encoded information representing the spectral values. The audio decoder is configured to jointly decode two or more most significant bits per spectral value on the basis of respective symbol codes for a set of spectral values using an arithmetic decoding, wherein a respective symbol code represents two or more most significant bits per spectral value for one or more spectral values. The audio decoder is configured to decode one or more least significant bits associated with one or more of the spectral values in dependence on how much least significant bit information is available, such that one or more least significant bits associated with one or more of the spectral values are decoded.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 26, 2022
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Emmanuel Ravelli, Guillaume Fuchs, Markus Schnell, Adrian Tomasek, Stefan Geyersberger
  • Patent number: 11127408
    Abstract: In methods and apparatus for performing temporal noise shaping, an apparatus may have a temporal noise shaping, TNS, tool for performing linear prediction, LP, filtering on an information signal including a plurality of frames; and a controller configured to control the TNS tool so that the TNS tool performs LP filtering with: a first filter whose impulse response has a higher energy; and a second filter whose impulse response has a lower energy than the first filter, wherein the second filter is not an identity filter, wherein the controller is configured to choose between filtering with the first filter, and filtering with the second filter on the basis of a frame metrics.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: September 21, 2021
    Assignee: Fraunhofer—Gesellschaft zur F rderung der angewandten Forschung e.V.
    Inventors: Emmanuel Ravelli, Manfred Lutzky, Markus Schnell, Alexander Tschekalinskij, Goran Markovic, Stefan Geyersberger
  • Publication number: 20210272577
    Abstract: An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V.
    Inventors: Nikolaus RETTELBACH, Bernhard GRILL, Guillaume FUCHS, Stefan GEYERSBERGER, Markus MULTRUS, Harald POPP, Juergen HERRE, Stefan WABNIK, Gerald SCHULLER, Jens HIRSCHFELD
  • Patent number: 11056124
    Abstract: In methods and apparatus for performing temporal noise shaping, an apparatus may have a temporal noise shaping, TNS, tool for performing linear prediction, LP, filtering on an information signal including a plurality of frames; and a controller configured to control the TNS tool so that the TNS tool performs LP filtering with: a first filter whose impulse response has a higher energy; and a second filter whose impulse response has a lower energy than the first filter, wherein the second filter is not an identity filter, wherein the controller is configured to choose between filtering with the first filter, and filtering with the second filter on the basis of a frame metrics.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: July 6, 2021
    Assignee: Fraunhofer—Gesellschaft zur F rderung der angewandten Forschung e.V.
    Inventors: Emmanuel Ravelli, Manfred Lutzky, Markus Schnell, Alexander Tschekalinskij, Goran Markovic, Stefan Geyersberger
  • Patent number: 11024323
    Abstract: An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: June 1, 2021
    Assignee: Fraunhofer-Gesellschaft zur Fcerderung der angewandten Forschung e.V.
    Inventors: Nikolaus Rettelbach, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Markus Multrus, Harald Popp, Juergen Herre, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20200335117
    Abstract: An apparatus for decoding data segments representing a time-domain data stream, a data segment being encoded in the time domain or in the frequency domain, a data segment being encoded in the frequency domain having successive blocks of data representing successive and overlapping blocks of time-domain data samples. The apparatus includes a time-domain decoder for decoding a data segment being encoded in the time domain and a processor for processing the data segment being encoded in the frequency domain and output data of the time-domain decoder to obtain overlapping time-domain data blocks. The apparatus further includes an overlap/add-combiner for combining the overlapping time-domain data blocks to obtain a decoded data segment of the time-domain data stream.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 22, 2020
    Inventors: Ralf GEIGER, Max NEUENDORF, Yoshikazu YOKOTANI, Nikolaus RETTELBACH, Juergen HERRE, Stefan GEYERSBERGER
  • Publication number: 20200294515
    Abstract: An audio encoder for encoding segments of coefficients, the segments of coefficients representing different time or frequency resolutions of a sampled audio signal, the audio encoder including a processor for deriving a coding context for a currently encoded coefficient of a current segment based on a previously encoded coefficient of a previous segment, the previously encoded coefficient representing a different time or frequency resolution than the currently encoded coefficient. The audio encoder further includes an entropy encoder for entropy encoding the current coefficient based on the coding context to obtain an encoded audio stream.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventors: Markus Multrus, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Nikolaus Rettelbach, Virgilio Bacigalupo
  • Publication number: 20200286494
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information is configured to obtain decoded spectral values on the basis of an encoded information representing the spectral values. The audio decoder is configured to jointly decode two or more most significant bits per spectral value on the basis of respective symbol codes for a set of spectral values using an arithmetic decoding, wherein a respective symbol code represents two or more most significant bits per spectral value for one or more spectral values. The audio decoder is configured to decode one or more least significant bits associated with one or more of the spectral values in dependence on how much least significant bit information is available, such that one or more least significant bits associated with one or more of the spectral values are decoded.
    Type: Application
    Filed: May 8, 2020
    Publication date: September 10, 2020
    Inventors: Emmanuel Ravelli, Guillaume Fuschs, Markus Schnell, Adrian Tomasek, Stefan Geyersberger
  • Publication number: 20200273471
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information is configured to obtain decoded spectral values on the basis of an encoded information representing the spectral values. The audio decoder is configured to jointly decode two or more most significant bits per spectral value on the basis of respective symbol codes for a set of spectral values using an arithmetic decoding, wherein a respective symbol code represents two or more most significant bits per spectral value for one or more spectral values. The audio decoder is configured to decode one or more least significant bits associated with one or more of the spectral values in dependence on how much least significant bit information is available, such that one or more least significant bits associated with one or more of the spectral values are decoded.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Inventors: Emmanuel RAVELLI, Guillaume FUCHS, Markus SCHNELL, Adrian TOMASEK, Stefan GEYERSBERGER
  • Publication number: 20200273472
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information is configured to obtain decoded spectral values on the basis of an encoded information representing the spectral values. The audio decoder is configured to jointly decode two or more most significant bits per spectral value on the basis of respective symbol codes for a set of spectral values using an arithmetic decoding, wherein a respective symbol code represents two or more most significant bits per spectral value for one or more spectral values. The audio decoder is configured to decode one or more least significant bits associated with one or more of the spectral values in dependence on how much least significant bit information is available, such that one or more least significant bits associated with one or more of the spectral values are decoded.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Inventors: Emmanuel RAVELLI, Guillaume FUCHS, Markus SCHNELL, Adrian TOMASEK, Stefan GEYERSBERGER
  • Publication number: 20200265850
    Abstract: In methods and apparatus for performing temporal noise shaping, an apparatus may have a temporal noise shaping, TNS, tool for performing linear prediction, LP, filtering on an information signal including a plurality of frames; and a controller configured to control the TNS tool so that the TNS tool performs LP filtering with: a first filter whose impulse response has a higher energy; and a second filter whose impulse response has a lower energy than the first filter, wherein the second filter is not an identity filter, wherein the controller is configured to choose between filtering with the first filter, and filtering with the second filter on the basis of a frame metrics.
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Inventors: Emmanuel RAVELLI, Manfred LUTZKY, Markus SCHNELL, Alexander TSCHEKALINSKIJ, Goran MARKOVIC, Stefan GEYERSBERGER
  • Patent number: 10714110
    Abstract: An apparatus for decoding data segments representing a time-domain data stream, a data segment being encoded in the time domain or in the frequency domain, a data segment being encoded in the frequency domain having successive blocks of data representing successive and overlapping blocks of time-domain data samples. The apparatus includes a time-domain decoder for decoding a data segment being encoded in the time domain and a processor for processing the data segment being encoded in the frequency domain and output data of the time-domain decoder to obtain overlapping time-domain data blocks. The apparatus further includes an overlap/add-combiner for combining the overlapping time-domain data blocks to obtain a decoded data segment of the time-domain data stream.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: July 14, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Ralf Geiger, Max Neuendorf, Yoshikazu Yokotani, Nikolaus Rettelbach, Juergen Herre, Stefan Geyersberger
  • Patent number: 10685659
    Abstract: An audio encoder for encoding segments of coefficients, the segments of coefficients representing different time or frequency resolutions of a sampled audio signal, the audio encoder including a processor for deriving a coding context for a currently encoded coefficient of a current segment based on a previously encoded coefficient of a previous segment, the previously encoded coefficient representing a different time or frequency resolution than the currently encoded coefficient. The audio encoder further includes an entropy encoder for entropy encoding the current coefficient based on the coding context to obtain an encoded audio stream.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 16, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Markus Multrus, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Nikolaus Rettelbach, Virgilio Bacigalupo
  • Patent number: 10629215
    Abstract: An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: April 21, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Nikolaus Rettelbach, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Markus Multrus, Harald Popp, Juergen Herre, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20190379990
    Abstract: In processing a multi-channel audio signal having at least three original channels, first and second downmix channels derived from the original channels are provided. For a selected original channel of the original channels, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data to be transmitted to a low-level decoder, which only decodes the first and second downmix channels, or to a high-level decoder, which provides a full multi-channel audio signal based on the downmix channels and the channel side information.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 12, 2019
    Inventors: JUERGEN HERRE, JOHANNES HILPERT, STEFAN GEYERSBERGER, ANDREAS HOELZER, CLAUS SPENGER
  • Patent number: 10455344
    Abstract: In processing a multi-channel audio signal having at least three original channels, a first downmix channel and a second downmix channel are provided, which are derived from the original channels. For a selected original channel, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and the second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data for transmission to a decoder. A low level decoder only decodes the first and second downmix channels. A high level decoder provides a full multi-channel audio signal based on the downmix channels and the channel side information.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 22, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Juergen Herre, Johannes Hilpert, Stefan Geyersberger, Andreas Hoelzer, Claus Spenger
  • Patent number: 10433091
    Abstract: In processing a multi-channel audio signal having at least three original channels, a first downmix channel and a second downmix channel are provided, which are derived from the original channels. For a selected original channel, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and the second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data for transmission to a decoder. A low level decoder only decodes the first and second downmix channels. A high level decoder provides a full multi-channel audio signal based on the downmix channels and the channel side information.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 1, 2019
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Juergen Herre, Johannes Hilpert, Stefan Geyersberger, Andreas Hoelzer, Claus Spenger
  • Patent number: 10425757
    Abstract: In processing a multi-channel audio signal having at least three original channels, a first downmix channel and a second downmix channel are provided, which are derived from the original channels. For a selected original channel, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and the second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data for transmission to a decoder. A low level decoder only decodes the first and second downmix channels. A high level decoder provides a full multi-channel audio signal based on the downmix channels and the channel side information.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 24, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V
    Inventors: Juergen Herre, Johannes Hilpert, Stefan Geyersberger, Andreas Hoelzer, Claus Spenger
  • Publication number: 20190239017
    Abstract: In processing a multi-channel audio signal having at least three original channels, a first downmix channel and a second downmix channel are provided, which are derived from the original channels. For a selected original channel, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and the second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data for transmission to a decoder. A low level decoder only decodes the first and second downmix channels. A high level decoder provides a full multi-channel audio signal based on the downmix channels and the channel side information.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: JUERGEN HERRE, JOHANNES HILPERT, STEFAN GEYERSBERGER, ANDREAS HOELZER, CLAUS SPENGER