Patents by Inventor Stefan Kolb

Stefan Kolb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094353
    Abstract: The present disclosure provides a light detection and ranging (LIDAR) system, which comprises: a distance measuring unit configured to emit a plurality of first pulses towards an object located in a field of view (FOV), wherein the object is associated with one or more markers; and a detector configured to receive at least one second pulse from the one or more markers of the object, wherein each of the at least one second pulse indicates object information identifying the object.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Inventors: Ricardo Ferreira, Stefan Hadrath, Peter Hoehmann, Herbert Kaestle, Florian Kolb, Norbert Magg, Jiye Park, Tobias Schmidt, Martin Schnarrenberger, Norbert Haas, Helmut Horn, Bernhard Siessegger, Guido Angenendt, Charles Braquet, Gerhard Maierbacher, Oliver Neitzke, Sergey Khrushchev
  • Publication number: 20230296567
    Abstract: A photoacoustic detector unit comprises a housing having an opening, and also a photoacoustic transducer designed to convert optical radiation into at least one from a pressure signal or a heat signal. The photoacoustic transducer covers the opening of the housing, such that the photoacoustic transducer and the housing form an acoustically tight cavity. A pressure pick-up is arranged in the acoustically tight cavity.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Inventors: Rainer Markus SCHALLER, Matthias EBERL, Simon GASSNER, Franz JOST, Stefan KOLB
  • Patent number: 11733213
    Abstract: A photoacoustic detector unit comprises a housing having an opening, and also a photoacoustic transducer designed to convert optical radiation into at least one from a pressure signal or a heat signal. The photoacoustic transducer covers the opening of the housing, such that the photoacoustic transducer and the housing form an acoustically tight cavity. A pressure pick-up is arranged in the acoustically tight cavity.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: August 22, 2023
    Assignee: Infineon Technologies AG
    Inventors: Rainer Markus Schaller, Matthias Eberl, Simon Gassner, Franz Jost, Stefan Kolb
  • Patent number: 11635410
    Abstract: A gas sensor having a heater, a receiver, and a space arranged between the heater and the receiver, is described, the heater being configured to generate a thermoacoustic sound wave propagating through the space by using a stimulation signal. The receiver is in this case configured to receive the thermoacoustic sound wave that has propagated through the space and to convert it into a reception signal that has a time-of-flight-dependent shift with respect to the stimulation signal and therefore information relating to the gas concentration in the space.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: April 25, 2023
    Assignee: Infineon Technologies AG
    Inventors: Matthias Eberl, Franz Jost, Stefan Kolb
  • Publication number: 20230116926
    Abstract: A photoacoustic sensor includes a first MEMS device and a second MEMS device. The first MEMS device includes a first MEMS component including an optical emitter, and a first optically transparent cover wafer-bonded to the first MEMS component, wherein the first MEMS component and the first optically transparent cover form a first closed cavity. The second MEMS device includes a second MEMS component including a pressure detector, and a second optically transparent cover wafer-bonded to the second MEMS component, wherein the second MEMS component and the second optically transparent cover form a second closed cavity.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Inventors: Rainer Markus SCHALLER, Jochen DANGELMAIER, Matthias EBERL, Simon GASSNER, Franz JOST, Stefan KOLB, Horst THEUSS
  • Patent number: 11630087
    Abstract: An apparatus for in-situ calibration of a photoacoustic sensor includes a measurement device configured to measure an electric signal at an IR emitter of the photoacoustic sensor, wherein the IR emitter generates an electromagnetic spectrum based on the electric signal; and a calibration unit including processing circuitry, configured to compare the electric signal with a comparison value to generate a comparison result used as calibration information. When performing the in-situ calibration, the calibration unit is configured to adjust the electric signal based on the calibration information, or the calibration unit is configured to process an output signal of the photoacoustic sensor based on the calibration information to obtain an adjusted output signal of the photoacoustic sensor.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: April 18, 2023
    Assignee: Infineon Technologies AG
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Juergen Woellenstein
  • Publication number: 20230106772
    Abstract: Described herein is a system for determining transport routes and/or a position of goods. The system includes at least one load carrier unit for transporting and/or storing goods, where the at least one load carrier unit includes data storage means; at least one data collection point, where the at least one load carrier unit and the at least one data collection point include communication means configured to provide a data exchange between the at least one load carrier unit and the at least one data collection point; at least one route and/or position evaluation means configured to determine a route and/or a position of the at least one load carrier unit based on the data exchange; at least one triggering means configured to trigger a predetermined operation on at least one computer unit depending on the determined route and/or position of the at least one load carrier unit.
    Type: Application
    Filed: April 12, 2021
    Publication date: April 6, 2023
    Inventors: Andreas WOLLNY, Stefania LANFRANCHINI, Oliver PIEPER, Stefan KOLB
  • Patent number: 11573204
    Abstract: A photoacoustic sensor includes a first MEMS device and a second MEMS device. The first MEMS device includes a first MEMS component including an optical emitter, and a first optically transparent cover wafer-bonded to the first MEMS component, wherein the first MEMS component and the first optically transparent cover form a first closed cavity. The second MEMS device includes a second MEMS component including a pressure detector, and a second optically transparent cover wafer-bonded to the second MEMS component, wherein the second MEMS component and the second optically transparent cover form a second closed cavity.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: February 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Rainer Markus Schaller, Jochen Dangelmaier, Matthias Eberl, Simon Gassner, Franz Jost, Stefan Kolb, Horst Theuss
  • Patent number: 11530980
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: December 20, 2022
    Assignees: Infineon Technologies AG, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Wilhelm Wiedmeier, Juergen Woellenstein
  • Publication number: 20220333568
    Abstract: A high-pressure fuel pump includes a pump housing, a receiving space in the pump housing, a pressure pulsation damper in the form of a diaphragm cell having two diaphragms, which pressure pulsation damper is arranged in the receiving space, and a holding device for holding the diaphragm cell in the receiving space. The holding device includes a connection portion, which is connected to the pump housing rigidly both in an axial direction and in a radial direction. The connection portion is fastened to the pump housing, both in the axial direction and in the radial direction, to an inner lateral surface of the pump housing that delimits the receiving space.
    Type: Application
    Filed: July 22, 2020
    Publication date: October 20, 2022
    Inventors: Stefan Kolb, Daniel Beckmann
  • Publication number: 20220155261
    Abstract: An apparatus for in-situ calibration of a photoacoustic sensor includes a measurement device configured to measure an electric signal at an IR emitter of the photoacoustic sensor, wherein the IR emitter generates an electromagnetic spectrum based on the electric signal; and a calibration unit including processing circuitry, configured to compare the electric signal with a comparison value to generate a comparison result used as calibration information. When performing the in-situ calibration, the calibration unit is configured to adjust the electric signal based on the calibration information, or the calibration unit is configured to process an output signal of the photoacoustic sensor based on the calibration information to obtain an adjusted output signal of the photoacoustic sensor.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Applicant: Infineon Technologies AG
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Juergen Woellenstein
  • Patent number: 11275059
    Abstract: An apparatus for in-situ calibration of a photoacoustic sensor is provided. The apparatus includes a calibration unit that includes at least one processor configured to calculate calibration information. A light emitter of the photoacoustic sensor is configured to emit an electromagnetic spectrum and the photoacoustic sensor is configured to provide at least two measurement signals based on at least two electromagnetic spectra. The calibration unit is configured to compare the at least two measurement signals to obtain the calibration information and apply the calibration information to the photoacoustic sensor to perform the in-situ calibration.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: March 15, 2022
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Juergen Woellenstein
  • Publication number: 20220074897
    Abstract: A gas sensor having a heater, a receiver, and a space arranged between the heater and the receiver, is described, the heater being configured to generate a thermoacoustic sound wave propagating through the space by using a stimulation signal. The receiver is in this case configured to receive the thermoacoustic sound wave that has propagated through the space and to convert it into a reception signal that has a time-of-flight-dependent shift with respect to the stimulation signal and therefore information relating to the gas concentration in the space.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 10, 2022
    Inventors: Matthias EBERL, Franz JOST, Stefan KOLB
  • Publication number: 20210285866
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Application
    Filed: June 2, 2021
    Publication date: September 16, 2021
    Applicants: Infineon Technologies AG, Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan KOLB, Alfons DEHE, Jochen HUBER, Franz JOST, Horst THEUSS, Wilhelm WIEDMEIER, Juergen WOELLENSTEIN
  • Patent number: 11092538
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 17, 2021
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Wilhelm Wiedmeier, Juergen Woellenstein
  • Patent number: 11067542
    Abstract: Photoacoustic gas sensor having a light pulse emitter, a microphone in a reference gas housing having a reference gas, and a sample gas housing to be filled with a gas to be analyzed. A wall separates the sample gas housing from the reference gas housing, and has a transparent region that is transparent to light within a frequency range of emitted light pulses. Remaining inner walls of the sample gas housing have a reflecting surface that reflect light pulses emitted by the emitter so that a portion of the light pulses not absorbed by the gas to be analyzed pass through the transparent region into the reference gas volume. The microphone generates a sensor signal indicating information on an acoustic wave caused by the light pulses interacting with the reference gas after crossing the gas to be analyzed.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 20, 2021
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Stefan Kolb, Horst Theuss
  • Publication number: 20210181151
    Abstract: A photoacoustic sensor includes a first MEMS device and a second MEMS device. The first MEMS device includes a first MEMS component including an optical emitter, and a first optically transparent cover wafer-bonded to the first MEMS component, wherein the first MEMS component and the first optically transparent cover form a first closed cavity. The second MEMS device includes a second MEMS component including a pressure detector, and a second optically transparent cover wafer-bonded to the second MEMS component, wherein the second MEMS component and the second optically transparent cover form a second closed cavity.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 17, 2021
    Applicant: Infineon Technologies AG
    Inventors: Rainer Markus SCHALLER, Jochen DANGELMAIER, Matthias EBERL, Simon GASSNER, Franz JOST, Stefan KOLB, Horst THEUSS
  • Publication number: 20210181158
    Abstract: A photoacoustic detector unit comprises a housing having an opening, and also a photoacoustic transducer designed to convert optical radiation into at least one from a pressure signal or a heat signal. The photoacoustic transducer covers the opening of the housing, such that the photoacoustic transducer and the housing form an acoustically tight cavity. A pressure pick-up is arranged in the acoustically tight cavity.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 17, 2021
    Inventors: Rainer Markus SCHALLER, Matthias EBERL, Simon GASSNER, Franz JOST, Stefan KOLB
  • Patent number: 10968877
    Abstract: The invention relates to an electromagnetically controllable suction valve (1) for a high-pressure fuel pump (2), comprising a magnet assembly (3) and a hydraulic module (4), the hydraulic module (4) engaging at least in sections in an annular magnet coil (5) of the magnet assembly (3). According to the invention, a heat-conducting material (6) and/or a heat-conducting body (7) is/are arranged between the magnet coil (5) and the hydraulic module (4). The invention further relates to a method for producing an electromagnetically actuatable suction valve (1).
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: April 6, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Gabriel Cichon, Stefan Kolb, Steffen Holm, Tobias Landenberger
  • Patent number: 10900932
    Abstract: An example of a system comprises a volume filled with a gas, a gas excitation device configured to excite the gas inside the volume, a microphone configured to output a microphone signal on the basis of the gas excited by the gas excitation device, and a testing unit configured to take the microphone signal as a basis for testing a gas-tightness of the volume. An example of a photoacoustic sensor comprises a hermetically sealed sensor cell, a gas excitation device and a testing unit configured to take the microphone signal dependent on the thermally excited gas as a basis for testing a gas-tightness of the sensor cell. One example comprises a method for testing a gas-tightness of a volume filled with a gas.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: January 26, 2021
    Assignee: Infineon Technologies AG
    Inventors: Matthias Eberl, Franz Jost, Stefan Kolb