Patents by Inventor Stefan P. Svensson

Stefan P. Svensson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8505481
    Abstract: In certain desirable embodiments, the present invention relates to the use of 15N isotopes into GaAsN, InAsN or GaSbN films for ion beam analysis. A semiconductor-nitride assembly for growing and analyzing crystal growth in a group III-V semiconductor sample that includes: a substrate; a buffer layer deposited on the substrate, a nitrogen gas injector to incorporate enriched nitrogen gas and the nitrogen gas injector includes a concentration of enriched nitrogen gas, a thin film consisting of at least one group III element containing compound where at least one group III element is covalently bonded with the nitrogen in the presence of the same or different group V element of the buffer layer, and a proton beam to analyze the incorporation of the nitrogen gas in the thin film layer is described.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: August 13, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stefan P Svensson, John D Demaree
  • Publication number: 20130112140
    Abstract: In certain desirable embodiments, the present invention relates to the use of 15N isotopes into GaAsN, InAsN or GaSbN films for ion beam analysis. A semiconductor-nitride assembly for growing and analyzing crystal growth in a group III-V semiconductor sample that includes: a substrate; a buffer layer deposited on the substrate, a nitrogen gas injector to incorporate enriched nitrogen gas and the nitrogen gas injector includes a concentration of enriched nitrogen gas, a thin film consisting of at least one group III element containing compound where at least one group III element is covalently bonded with the nitrogen in the presence of the same or different group V element of the buffer layer, and a proton beam to analyze the incorporation of the nitrogen gas in the thin film layer is described.
    Type: Application
    Filed: June 1, 2012
    Publication date: May 9, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Stefan P Svensson, John D Demaree
  • Patent number: 8372197
    Abstract: A control system and method for controlling temperatures while performing a MBE deposition process, wherein the control system comprises a MBE growth structure; a heater adapted to provide heat for the MBE deposition process on the MBE growth structure; and a control computer adapted to receive a plurality of dynamic feedback control signals derived from the MBE growth structure; switch among a plurality of control modes corresponding with the plurality of dynamic feedback control signals; and send an output power signal to the heater to control the heating for the MBE deposition process based on a combination of the plurality of control modes. In one embodiment, the plurality of dynamic feedback control signals comprises thermocouple signals and pyrometer signals.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: February 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Stefan P. Svensson
  • Patent number: 8222052
    Abstract: In certain desirable embodiments, the present invention relates to the use of 15N isotopes into GaAsN, InAsN or GaSbN films for ion beam analysis. A semiconductor-nitride assembly for growing and analyzing crystal growth in a group III-V semiconductor sample that includes: a substrate; a buffer layer deposited on the substrate, a nitrogen gas injector to incorporate enriched nitrogen gas and the nitrogen gas injector includes a concentration of enriched nitrogen gas, a thin film consisting of at least one group III element containing compound where at least one group III element is covalently bonded with the nitrogen in the presence of the same or different group V element of the buffer layer, and a proton beam to analyze the incorporation of the nitrogen gas in the thin film layer is described.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: July 17, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stefan P. Svensson, John D. Demaree
  • Publication number: 20120024222
    Abstract: A control system and method for controlling temperatures while performing a MBE deposition process, wherein the control system comprises a MBE growth structure; a heater adapted to provide heat for the MBE deposition process on the MBE growth structure; and a control computer adapted to receive a plurality of dynamic feedback control signals derived from the MBE growth structure; switch among a plurality of control modes corresponding with the plurality of dynamic feedback control signals; and send an output power signal to the heater to control the heating for the MBE deposition process based on a combination of the plurality of control modes. In one embodiment, the plurality of dynamic feedback control signals comprises thermocouple signals and pyrometer signals.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 2, 2012
    Inventor: Stefan P. Svensson
  • Publication number: 20110129949
    Abstract: In certain desirable embodiments, the present invention relates to the use of 15N isotopes into GaAsN, InAsN or GaSbN films for ion beam analysis. A semiconductor-nitride assembly for growing and analyzing crystal growth in a group III-V semiconductor sample that includes: a substrate; a buffer layer deposited on the substrate, a nitrogen gas injector to incorporate enriched nitrogen gas and the nitrogen gas injector includes a concentration of enriched nitrogen gas, a thin film consisting of at least one group III element containing compound where at least one group III element is covalently bonded with the nitrogen in the presence of the same or different group V element of the buffer layer, and a proton beam to analyze the incorporation of the nitrogen gas in the thin film layer is described.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Applicant: The United State of America as represented by the Secretary of the Army
    Inventors: Stefan P. Svensson, John D. Demaree
  • Publication number: 20080295764
    Abstract: A control system and method for controlling temperatures while performing a MBE deposition process, wherein the control system comprises a MBE growth structure; a heater adapted to provide heat for the MBE deposition process on the MBE growth structure; and a control computer adapted to receive a plurality of dynamic feedback control signals derived from the MBE growth structure; switch among a plurality of control modes corresponding with the plurality of dynamic feedback control signals; and send an output power signal to the heater to control the heating for the MBE deposition process based on a combination of the plurality of control modes. In one embodiment, the plurality of dynamic feedback control signals comprises thermocouple signals and pyrometer signals.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 4, 2008
    Inventor: Stefan P. Svensson
  • Patent number: 6773509
    Abstract: An improved molecular beam epitaxy (MBE) system and method in which an interface and a processing component associated with the MBE system enables an operator to set up the molecular beam epitaxy system such that it will produce beam fluxes of the correct magnitude and with a high degree of precision in response to inputted growth criteria. In standard operation mode, after user input of desired growth parameters, a command file is started via interaction through the interface.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: August 10, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Stefan P. Svensson