Patents by Inventor Stefan Rittinger

Stefan Rittinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240010597
    Abstract: A process for the preparation of a color stable C6-12 saturated aliphatic carboxylic acid in which (1) the corresponding aldehyde is oxidized with molecular oxygen to obtain the crude saturated aliphatic carboxylic acid in a liquid mixture, (2) molecular oxygen removed from the crude saturated aliphatic carboxylic acid mixture, and (3) the saturated aliphatic carboxylic acid separated from the molecular oxygen depleted mixture by distillation as a color stable product.
    Type: Application
    Filed: August 9, 2021
    Publication date: January 11, 2024
    Inventors: Jessica Nadine HAMANN, Joaquim Henrique TELES, Peter Georg OHLEMUELLER, Friedemann GAITZSCH, Shelue LIANG, Stefan RITTINGER, Frauke THRUN, Richard DEHN
  • Publication number: 20230391542
    Abstract: A container and a process for the degradation stable storage and transport of a liquid comprising a saturated aliphatic C6-12 carboxylic acid in which the liquid is covered with an oxygen free or at least heavily oxygen depleted inert gas phase atmosphere above the liquid.
    Type: Application
    Filed: October 12, 2021
    Publication date: December 7, 2023
    Inventors: Joaquim Henrique TELES, Jessica Nadine HAMANN, Shelue LIANG, Stefan RITTINGER
  • Patent number: 10450252
    Abstract: Process for the continuous hydrogenation of a carboxylic acid (I) to an alcohol (II) by means of hydrogen at a temperature of from 100 to 300° C. and a pressure of 10 to 33 MPa abs in a reactor tube through which axial flow occurs and which has a fixed-bed catalyst which is fixed therein and comprises at least one element from the group consisting of Re, Co and Cu, and in which the carboxylic acid (I) to be hydrogenated is present in a liquid mixture (III) comprising the carboxylic acid (I), water and alcohol (II), where the mixture (III) has an acid number of from 0.2 to 25 mg KOH/g and comprises at least 15% by weight of water and at least 20% by weight of alcohol (II) and the flow velocity of the flowing liquid calculated on the basis of the geometric cross-sectional area of the empty, catalyst-free reactor tube is from 10 to 50 m/h.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 22, 2019
    Assignee: BASF SE
    Inventors: Rolf Pinkos, Stefan Rittinger, Christoph Nuebling, Olivier Abillard
  • Publication number: 20190112245
    Abstract: Process for the continuous hydrogenation of a carboxylic acid (I) to an alcohol (II) by means of hydrogen at a temperature of from 100 to 300° C. and a pressure of 10 to 33 MPa abs in a reactor tube through which axial flow occurs and which has a fixed-bed catalyst which is fixed therein and comprises at least one element from the group consisting of Re, Co and Cu, and in which the carboxylic acid (I) to be hydrogenated is present in a liquid mixture (Ill) comprising the carboxylic acid (I), water and alcohol (II), where the mixture (Ill) has an acid number of from 0.2 to 25 mg KOH/g and comprises at least 15% by weight of water and at least 20% by weight of alcohol (II) and the flow velocity of the flowing liquid calculated on the basis of the geometric cross-sectional area of the empty, catalyst-free reactor tube is from 10 to 50 m/h.
    Type: Application
    Filed: March 29, 2017
    Publication date: April 18, 2019
    Inventors: Rolf PINKOS, Stefan RITTINGER, Christoph NUEBLING, Olivier ABILLARD
  • Patent number: 9556136
    Abstract: A process for the distillation of a mixture which consists to at least 90% by weight of a cyclic N-vinylamide and which comprises a stabilizer, wherein a polyether is added to the mixture before or during distillation and a product is obtained which consists to at least 99.5% by weight of the cyclic N-vinylamide.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 31, 2017
    Assignee: BASF SE
    Inventors: Stefan Rittinger, Regina Vogelsang, Pierre Fournier, Anirudh Acharya, Sonja Judat
  • Patent number: 9428438
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which, in step (a), a liquid stream comprising formic acid, methanol, water and tertiary amine (I) is produced by combining methyl formate, water and tertiary amine (I), from there in step (b), methanol is separated off and in step (c), formic acid is removed by distillation from the liquid stream obtained in a distillation apparatus, wherein, when methyl formate, water and tertiary amine (I) are combined, methyl formate, water and optionally tertiary amine (I) are first introduced in step (a1) in a molar ratio of 0?n(amine to a1)/n(mefo to a1)?0.1, and from 70 to 100% of the hydrolysis equilibrium possible is set and then, in step (a2), tertiary amine (I) is introduced in a molar ratio of 0.1?n(amine to a2)/n(mefo to a1)?2, and the mixture is reacted.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 30, 2016
    Assignee: BASF SE
    Inventors: Donata Maria Fries, Klaus-Dieter Mohl, Martin Schäfer, Daniel Schneider, Peter Bassler, Stefan Rittinger, Joaquim Henrique Teles
  • Publication number: 20150307466
    Abstract: A process for the distillation of a mixture which consists to at least 90% by weight of a cyclic N-vinylamide and which comprises a stabilizer, wherein a polyether is added to the mixture before or during distillation and a product is obtained which consists to at least 99.5% by weight of the cyclic N-vinylamide.
    Type: Application
    Filed: March 19, 2015
    Publication date: October 29, 2015
    Applicant: BASF SE
    Inventors: Stefan RITTINGER, Regina VOGELSANG, Pierre FOURNIER, Anirudh ACHARYA, Sonja JUDAT
  • Patent number: 8957244
    Abstract: Process for preparing methyl formate by carbonylation of methanol by means of carbon monoxide in a carbonylation reactor in the presence of a catalyst system comprising alkali metal formate and alkali metal alkoxide to give a reaction mixture (RM) which comprises methyl formate, alkali metal formate, alkali metal alkoxide and possibly unreacted methanol and unreacted carbon monoxide and is taken from the carbonylation reactor, wherein the reaction mixture (RM) comprises at least 0.5% by weight of alkali metal alkoxide based on the total weight of the reaction mixture (RM) and the molar ratio of alkali metal formate to alkali metal alkoxide in the reaction mixture (RM) is greater than 1.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 17, 2015
    Assignee: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Jürgen Paschold, Joaquim Henrique Teles, Stefan Rittinger
  • Patent number: 8933277
    Abstract: A process is provided for recovering components from a low boiler mixture which is obtained in the distillation of hydrogenation effluents from the preparation of polymethylols, by multistage distillation of the low boiler mixture having a tertiary amine, water, methanol, a polymethylol, a methylolalkanal, an alcohol and an alkanal with a methylene group in the alpha position to the carbonyl group. A first distillation stage involves separating the low boiler mixture into a higher-boiling, predominantly water-rich fraction and into a lower-boiling aqueous organic fraction having the tertiary amine. A second distillation stage involves separating the aqueous organic fraction from the first distillation stage into a predominantly amine-containing fraction and a further amine-depleted fraction. The tertiary amine is trimethylamine or triethylamine and the bottom temperature in the second distillation stage is at least 110° C.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: January 13, 2015
    Assignee: BASF SE
    Inventors: Stephan Schlitter, Michael Steiniger, Stefan Rittinger, Tilman Sirch, Steffen Maas
  • Patent number: 8901350
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 2, 2014
    Assignee: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Patent number: 8889905
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and tertiary amine (I) is produced by combining tertiary amine (I) and a formic acid source, secondary components comprised therein are separated off, formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, where the bottom output from the distillation apparatus is separated into two liquid phases, and the upper liquid phase is recirculated to the formic acid source and the lower liquid phase is recirculated to the separation of the secondary components and/or to the distillation apparatus, wherein low boilers are removed by distillation from the upper liquid phase and recirculated to the depleted stream.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: November 18, 2014
    Assignee: BASF SE
    Inventors: Peter Bassler, Stefan Rittinger, Daniel Schneider, Donata Maria Fries, Klaus-Dieter Mohl, Joaquim Henrique Teles, Martin Schäfer, Jürgen Paschold
  • Patent number: 8884076
    Abstract: The present invention relates to a process for distilling an aqueous polymethylol mixture which comprises a polymethylol of the formula (I) (HOCH2)2—C—R2??(I) in which each R is independently a further methylol group or an alkyl group having 1 to 22 carbon atoms or an aryl or aralkyl group having 6 to 22 carbon atoms, a tertiary amine, water and the adduct of tertiary amine and formic acid (amine formate), which comprises performing the distillation in a distillation column which is connected at the bottom to an evaporator, the bottom temperature being above the evaporation temperature of the monoester of formic acid and polymethylol (polymethylol formate) which forms during distillation. The present invention further relates to a composition comprising polymethylol and 1 to 10 000 ppm by weight of polymethylol formate, and to the use thereof.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: November 11, 2014
    Assignee: BASF SE
    Inventors: Tilman Sirch, Michael Steiniger, Steffen Maas, Stefan Rittinger, Stephan Schlitter
  • Patent number: 8877965
    Abstract: A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where the work-up of the output (3) from the hydrogenation reactor (I) is carried out by addition of water so as to increase the distribution coefficient of the catalyst between the upper phase (4) and the lower phase.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: November 4, 2014
    Assignee: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Daniel Schneider
  • Patent number: 8835683
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid, tertiary amine (I) and water is produced by combining tertiary amine (I) and a formic acid source in the presence of water, water and organic decomposition products of the tertiary amine (I) are removed and formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, wherein the stream comprising water and organic decomposition products of the tertiary amine (I) which have been separated off is separated into two liquid phases, the upper liquid phase is removed and the lower, water-comprising liquid phase is recirculated to the formic acid source.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 16, 2014
    Assignee: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Donata Maria Fries, Joaquim Henrique Teles, Peter Bassler, Stefan Rittinger, Thomas Schaub
  • Patent number: 8791297
    Abstract: A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols and also water, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, with work-up of the output (3) from the hydrogenation reactor (I) in a plurality of process steps, where a tertiary amine-comprising stream (13) from the work-up is used as selective solvent for the catalyst, is proposed.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 29, 2014
    Assignee: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Daniel Schneider
  • Publication number: 20140148617
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which, in step (a), a liquid stream comprising formic acid, methanol, water and tertiary amine (I) is produced by combining methyl formate, water and tertiary amine (I), from there in step (b), methanol is separated off and in step (c), formic acid is removed by distillation from the liquid stream obtained in a distillation apparatus, wherein, when methyl formate, water and tertiary amine (I) are combined, methyl formate, water and optionally tertiary amine (I) are first introduced in step (a1) in a molar ratio of 0?n(amine to a1)/n(mefo to a1)?0.1, and from 70 to 100% of the hydrolysis equilibrium possible is set and then, in step (a2), tertiary amine (I) is introduced in a molar ratio of 0.1?n(amine to a2)/n(mefo to a1)?2, and the mixture is reacted.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 29, 2014
    Applicant: BASF SE
    Inventors: Donata Maria Fries, Klaus-Dieter Mohl, Martin Schäfer, Daniel Schneider, Peter Bassler, Stefan Rittinger, Joaquim Henrique Teles
  • Publication number: 20140148614
    Abstract: Process for preparing methyl formate by carbonylation of methanol by means of carbon monoxide in a carbonylation reactor in the presence of a catalyst system comprising alkali metal formate and alkali metal alkoxide to give a reaction mixture (RM) which comprises methyl formate, alkali metal formate, alkali metal alkoxide and possibly unreacted methanol and unreacted carbon monoxide and is taken from the carbonylation reactor, wherein the reaction mixture (RM) comprises at least 0.5% by weight of alkali metal alkoxide based on the total weight of the reaction mixture (RM) and the molar ratio of alkali metal formate to alkali metal alkoxide in the reaction mixture (RM) is greater than 1.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 29, 2014
    Applicant: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Jürgen Paschold, Joaquim Henrique Teles, Stefan Rittinger
  • Patent number: 8575401
    Abstract: The present invention relates to a process for purifying crude polymethylol which comprises polymethylol of the formula (I) (HOCH2)2—C—R2??(I) in which each R is independently a further methylol group or an alkyl group having 1 to 22 carbon atoms or an aryl or aralkyl group having 6 to 22 carbon atoms, and also hydroxy acid of the formula (IV) in which each R is independently as defined above, which comprises performing the purification in a distillation column, the bottom of the distillation column being connected to an evaporator with a short residence time. The present invention further relates to a composition comprising polymethylol and 1 to 10 000 ppm by weight of an ester of polymethylol and of a hydroxy acid and to the use thereof.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: November 5, 2013
    Assignee: BASF SE
    Inventors: Tilman Sirch, Michael Steiniger, Steffen Maas, Stefan Rittinger
  • Publication number: 20130190532
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid, tertiary amine (I) and water is produced by combining tertiary amine (I) and a formic acid source in the presence of water, water and organic decomposition products of the tertiary amine (I) are removed and formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, wherein the stream comprising water and organic decomposition products of the tertiary amine (I) which have been separated off is separated into two liquid phases, the upper liquid phase is removed and the lower, water-comprising liquid phase is recirculated to the formic acid source.
    Type: Application
    Filed: December 20, 2012
    Publication date: July 25, 2013
    Applicant: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Donata Maria Fries, Joaquim Henrique Teles, Peter Bassler, Stefan Rittinger, Thomas Schaub
  • Patent number: 8426641
    Abstract: Process for preparing formic acid by hydrogenation of carbon dioxide in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine and a polar solvent at a pressure of from 0.2 to 30 MPa abs and a temperature of from 20 to 200° C. to form two liquid phases, separation of the two liquid phases, wherein the liquid phase (B) enriched with the tertiary amine is recirculated to the hydrogenation reactor and the formic acid/amine adduct from the liquid phase (A) enriched with the formic acid/amine adduct and the polar solvent is thermally dissociated into free formic acid and free tertiary amine in a distillation unit and the tertiary amine liberated in the dissociation and the polar solvent are recirculated to the hydrogenation reactor.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: April 23, 2013
    Assignee: BASF SE
    Inventors: Thomas Schaub, Rocco Paciello, Klaus-Dieter Mohl, Daniel Schneider, Martin Schaefer, Stefan Rittinger