Patents by Inventor Stefan Wildt

Stefan Wildt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8697394
    Abstract: The present invention relates to eukaryotic host cells, especially lower eukaryotic host cells, having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar and sugar nucleotide transporters to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII, GnTIV, GnTV, GnT VI or GnTIX activity, which produce bisected and/or multiantennary N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar, sugar nucleotide transporters, to yield human-like glycoproteins.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: April 15, 2014
    Assignee: Glycofi, Inc.
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Robert C. Davidson
  • Publication number: 20130295608
    Abstract: Lower eukaryotic host cells have been recombinantly engineered to produce glycoprotein having human-like O-glycosylation. The glycoproteins are useful for the production of glycoprotein compositions with advantages for the production of human therapeutics.
    Type: Application
    Filed: February 20, 2012
    Publication date: November 7, 2013
    Inventors: Piotr Bobrowicz, William J. Cook, Stephen Hamilton, Juergen Nett, Terrance A. Stadheim, Stefan Wildt
  • Publication number: 20130217067
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 22, 2013
    Applicant: GlycoFi, Inc.
    Inventors: TILLMAN U. GERNGROSS, Stefan Wildt, Byung-kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Patent number: 8445227
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII activity, which produce bisected N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 21, 2013
    Assignee: Merck Sharp & Dohme
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Robert C. Davidson
  • Publication number: 20120232007
    Abstract: Methods for producing proteins and glycoproteins in Pichia pastoris that lack detectable cross binding activity to antibodies made against host cell antigens are described. In particular, methods are described wherein recombinant Pichia pastoris strains that do not display a ?-mannosyltransferase 2 activity with respect to an N-glycan or O-glycan and do not display at least one activity selected from a ?-mannosyltransferase 1, 3, and 4 activity to produce recombinant proteins and glycoproteins. These recombinant Pichia pastoris strains can produce proteins and glycoproteins that lack detectable ?-mannosidase resistant ?-mannose residues thereon and thus, lack cross binding activity to antibodies against host cell antigens. Further described are methods for producing bi-sialylated human erythropoietin in Pichia pastoris that lack detectable cross binding activity to antibodies against host cell antigens.
    Type: Application
    Filed: October 11, 2010
    Publication date: September 13, 2012
    Applicant: MERCK SHARP & DOHME CORP
    Inventors: Piotr Bobrowicz, Sujatha Gomathinayagam, Stephen Hamilton, Huijuan Li, Natarajan Sethuraman, Terrance A. Stadheim, Stefan Wildt
  • Publication number: 20120135461
    Abstract: A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of one or more ?-1,2-mannosidases from Coccidiodes immitis, Coccidiodes posadasii, Penicillium citrinum, Magnaporthe grisea, Aspergillus saitoi, Aspergillus oryzae, and Chaetomiun globosum or a catalytically active fragment of said ?-1,2-mannosidase.
    Type: Application
    Filed: July 27, 2011
    Publication date: May 31, 2012
    Inventors: WILLIAM JAMES COOK, STEFAN WILDT
  • Publication number: 20120121630
    Abstract: The present invention provides Herpes Simplex Virus (HSV) gD, gC, gB and/or gE recombinant glycoproteins having a particular pre-selected N-linked glycosylation pattern as the predominant N-glycoform. The present invention also provides methods of producing these recombinant glycoproteins in yeast, preferably Pichia pastoris, which may be glycoengineered to provide particular glycosylation patterns. The present invention further provides vaccines comprising gD and gC, and optionally gB and/or gE, at least one of which has a particular pre-selected N-linked glycosylation pattern as the predominant N-glycoform. The recombinant glycoproteins are produced by a method which, in one embodiment, comprises transforming a yeast of the genus Pichia with an expression vector containing a DNA encoding an HSV glycoprotein, which is under regulation of a promoter functional in a yeast of the genus Pichia, culturing the yeast in a medium, and recovering the recombinant glycoprotein from the obtained culture.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 17, 2012
    Inventors: Janine T. Bryan, John W. Ballet, Jessica A. Flynn, Danilo R. Casimiro, Robert C. Davidson, Victoria Copeland, Sandra E. Rios, Byung-Kwon Choi, Stefan Wildt
  • Publication number: 20120052530
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: June 9, 2011
    Publication date: March 1, 2012
    Applicant: GlycoFi, Inc.
    Inventors: TILLMAN U. GERNGROSS, Stefan Wildt, Byung-kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Publication number: 20120021948
    Abstract: Methods for display of recombinant whole immunoglobulins or immunoglobulin libraries on the surface of eukaryote host cells, including yeast and filamentous fungi, are described. The methods are useful for screening libraries of recombinant immunoglobulins in eukaryote host cells to identify immunoglobulins that are specific for an antigen of interest.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Bianka Prinz, Natarajan Sethuraman, Dongxing Zha, Stefan Wildt, Piotr Bobrowicz
  • Patent number: 8067551
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 29, 2011
    Assignee: Glycofi, Inc.
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R Hamilton, Robert C. Davidson
  • Patent number: 8067339
    Abstract: Methods for display of recombinant whole immunoglobulins or immunoglobulin libraries on the surface of eukaryote host cells, including yeast and filamentous fungi, are described. The methods are useful for screening libraries of recombinant immunoglobulins in eukaryote host cells to identify immunoglobulins that are specific for an antigen of interest.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 29, 2011
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Bianka Prinz, Natarajan Sethuraman, Dongxing Zha, Stefan Wildt, Piotr Bobrowicz
  • Patent number: 7935513
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: May 3, 2011
    Assignee: Glycofi, Inc.
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Publication number: 20110086054
    Abstract: Lower eukaryotic host cells have been engineered to produce glycoprotein having at least one terminal ?-galactosyl epitope. The glycoproteins are useful for the production of highly antigenic glycoprotein compositions with advantages for the production of vaccines.
    Type: Application
    Filed: December 3, 2009
    Publication date: April 14, 2011
    Inventors: Natarajan Sethuraman, Robert C. Davidson, Terrance A. Stadheim, Stefan Wildt
  • Publication number: 20110053214
    Abstract: The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal ?-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
    Type: Application
    Filed: July 21, 2010
    Publication date: March 3, 2011
    Applicant: GLYCOFI, INC.
    Inventors: Robert Collier Davidson, Tillman Ulf Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen Robin Hamilton
  • Publication number: 20100331192
    Abstract: Methods for display of recombinant proteins or protein libraries on the surface of lower eukaryotes such as yeast and filamentous fungi are described. The methods are useful for screening libraries of recombinant proteins in lower eukaryotes to identify particular proteins with desired properties from the array of proteins in the libraries. The methods are particularly useful for constructing and screening antibody libraries in lower eukaryotes.
    Type: Application
    Filed: February 20, 2009
    Publication date: December 30, 2010
    Inventors: Dongxing Zha, Stefan Wildt
  • Patent number: 7795002
    Abstract: The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal ?-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 14, 2010
    Assignee: Glycofi, Inc.
    Inventors: Robert Davidson, Tillman Ulf Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen Robin Hamilton
  • Publication number: 20100184143
    Abstract: The present invention relates to immunoglobulin glycoprotein compositions having predominant N-glycan structures on an immunoglobulin glycoprotein which confer a specific effector function. Additionally, the present invention relates to pharmaceutical compositions comprising an antibody having a particular enriched N-glycan structure, wherein said N-glycan structure is Man3GlcNAc2.
    Type: Application
    Filed: October 9, 2008
    Publication date: July 22, 2010
    Inventors: Tillman U. Gerngross, Huijuan Li, Stefan Wildt
  • Publication number: 20100016561
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII activity, which produce bisected N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
    Type: Application
    Filed: August 13, 2009
    Publication date: January 21, 2010
    Applicant: GlycoFi, Inc.
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Robert C. Davidson
  • Publication number: 20100016555
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII activity, which produce bisected N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
    Type: Application
    Filed: August 13, 2009
    Publication date: January 21, 2010
    Applicant: GlycoFi, Inc.
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen H. Nett, Robert C. Davidson
  • Publication number: 20100009866
    Abstract: Methods for display of recombinant whole immunoglobulins or immunoglobulin libraries on the surface of eukaryote host cells, including yeast and filamentous fungi, are described. The methods are useful for screening libraries of recombinant immunoglobulins in eukaryote host cells to identify immunoglobulins that are specific for an antigen of interest.
    Type: Application
    Filed: June 23, 2009
    Publication date: January 14, 2010
    Inventors: Bianka Prinz, Natarajan Sethuraman, Dongxing Zha, Stefan Wildt, Piotr Bobrowicz