Patents by Inventor Stefan Wirth

Stefan Wirth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160054457
    Abstract: A sensor chip, in particular for computerized tomography detectors, including an analog-digital converter electrically connected to an element detecting radiation. A problem addressed is that of defining a sensor chip which is as cost-efficient and reliable as possible. According to an embodiment of the invention, only one single crystalline base plate is used, on which all required components of the sensor chip are applied. A through-contact between the conductor paths or the contacts of both sides of the base plate is used as applicable in order to connect the components of both sides to each other.
    Type: Application
    Filed: March 19, 2014
    Publication date: February 25, 2016
    Inventors: Mario EICHENSEER, Thomas REICHEL, Stefan WIRTH
  • Patent number: 9151850
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a conversion system (160) located on the lateral wall (123) of the scintillator (120), said system comprising a plurality of channels (165). Each channel (165) has a photocathode section (130; 131; 132) for generating electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), said electrons being multipliable by impact processes in the channels (165). A detection system (170) for detecting electrons (204) that have been multiplied in the channels (165) of the conversion system (160) is also provided.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 6, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Patent number: 9134434
    Abstract: An x-ray detector for a medical imaging device includes an anti-scatter grid, a measuring layer including a regular arrangement of measuring cells, and an evaluation unit. The anti-scatter grid covers the measuring layer and is aligned toward a specific focal point. The evaluation unit is configured to determine a focal position of an x-ray source relative to the focal point based on a local intensity difference of x-rays striking the measuring layer.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 15, 2015
    Assignee: Seimens Aktiengesellschaft
    Inventors: Daniel Niederlöhner, Bodo Reitz, Stefan Wirth
  • Publication number: 20150221406
    Abstract: A direct-converting x-ray radiation detector is disclosed for detecting x-ray radiation, in particular for use in a CT system. In an embodiment, the detector includes a semiconductor material used for detecting the x-ray radiation; at least one collimator; and at least one radiation source, to irradiate the semiconductor material with additional radiation. In at least one embodiment, the at least one collimator includes at least one reflection layer on a side facing the semiconductor material, on which the additional radiation is reflected to the semiconductor material. In another embodiment, a CT system including the direct-converting x-ray radiation detector, and a method for detecting incident x-ray radiation via a direct-converting x-ray radiation detector, in particular for use in a CT system, are disclosed.
    Type: Application
    Filed: July 9, 2013
    Publication date: August 6, 2015
    Inventors: Fabrice Dierre, Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Karl Stierstorfer, Matthias Strassburg, Justus Tonn, Stefan Wirth
  • Patent number: 9097808
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a photocathode section (130) that is located on the lateral electrons wall (123) of the scintillator (120) and that generates electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), a microchannel plate (161; 162) comprising a plurality of channels (165), for multiplying the electrons (204) that have been generated by the photocathode section (130) and a detection system (171; 172) for detecting the electrons (204) that have been multiplied by means of the microchannel plate (161; 162).
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 4, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Publication number: 20150212215
    Abstract: A method is disclosed for detecting x-rays using an x-ray detector which includes a direct-conversion semiconductor detector element. Additional radiation is supplied to the semiconductor detector element using a radiation source, and the supply of the additional radiation is controlled and/or regulated on the basis of a specified target value. In at least one embodiment, the target value can be specified in a variable manner over time as a sequence of target values. An x-ray detector system is further disclosed, with which the method can be carried out.
    Type: Application
    Filed: July 9, 2013
    Publication date: July 30, 2015
    Inventors: Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Publication number: 20150168569
    Abstract: A method is disclosed for detecting incident X-ray radiation by way of a direct-converting X-ray radiation detector. A semi-conductor material used for detection purposes is irradiated with additional radiation with an energy level of at least 1.6 eV in order to produce additional charge carriers. A direct-converting X-ray radiation detector is disclosed for detecting X-ray radiation, at least including a semi-conductor material used for X-ray detection and at least one radiation source which irradiates the semi-conductor material with additional radiation, the radiation having an energy level of at least 1.6 eV. A CT system including an X-ray radiation detector is also disclosed.
    Type: Application
    Filed: July 10, 2013
    Publication date: June 18, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter Hackenschmied, Edgar Göderer, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Patent number: 9039284
    Abstract: A method is disclosed for energy calibrating quantum-counting x-ray detectors in an x-ray installation including at least two x-ray systems turnable around a center of rotation. A target, for producing x-ray fluorescence radiation, is positioned between the first x-ray source and first x-ray detector and irradiated with x-radiation of the first x-ray source in such a way that x-ray fluorescence radiation which strikes the second x-ray detector from the target is produced by the x-radiation of the first x-ray source. The second x-ray detector is then energy calibrated by way of the x-ray fluorescence radiation of the target. The first x-ray detector can be energy calibrated in the same way with the aid of the x-radiation of the second x-ray source. With the proposed method, the x-ray detectors of a dual-source CT x-ray installation can be calibrated with little expenditure under conditions close to those of the system.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 26, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mario Eichenseer, Steffen Kappler, Edgar Kraft, Björn Kreisler, Daniel Niederlöhner, Stefan Wirth
  • Publication number: 20150078534
    Abstract: A scattered radiation grid of a CT detector is disclosed and includes a plurality of detector elements arranged in multiple cells in the phi direction and in the z direction of a CT system, having a plurality of free passage channels arranged to correspond to the detector elements, and walls fully enclosing the free passage channels at the longitudinal sides thereof. According to an embodiment of the invention, the walls of the scattered radiation grid are produced using a 3D screen-printing method.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 19, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mario Eichenseer, Andreas Freund, Stefan Wirth
  • Publication number: 20150030120
    Abstract: An of the invention relates to a direct-conversion x-ray detector for detection of x-ray radiation, including a direct converter used for detection of the x-ray radiation, at least one collimator disposed at least partly in the direction of radiation of the x-ray radiation in front of the direct converter and a least one radiation source which is disposed to the side of the direct converter and irradiates the direct converter indirectly with an additional radiation. In at least one embodiment, the a least one collimator, on a side facing towards the direct converter, includes at least one reflection layer, on which the additional radiation is reflected onto the direct converter, and includes a cooling facility through which the at least one radiation source is able to be cooled.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 29, 2015
    Inventors: Thorsten ERGLER, Andreas FREUND, Björn KREISLER, Christian SCHRÖTER, Stefan WIRTH
  • Patent number: 8831181
    Abstract: A grid module of a scattered-radiation grid is disclosed. The scattered-radiation grid includes a number of grid modules disposed next to one another with a plurality of webs, especially for use in conjunction with a CT detector, a CT detector and a CT system with such a detector. In accordance with an embodiment of the invention, at the joining surfaces of the grid modules, the webs located there are provided with breakthroughs to compensate for a disproportionate reduction in scattered radiation.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 9, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Björn Kreisler, Thomas Reichel, Bodo Reitz, Helmut Winkelmann, Stefan Wirth, Jan Wrege
  • Publication number: 20140124676
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a conversion system (160) located on the lateral wall (123) of the scintillator (120), said system comprising a plurality of channels (165). Each channel (165) has a photocathode section (130; 131; 132) for generating electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), said electrons being multipliable by impact processes in the channels (165). A detection system (170) for detecting electrons (204) that have been multiplied in the channels (165) of the conversion system (160) is also provided.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 8, 2014
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Publication number: 20140103219
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a photocathode section (130) that is located on the lateral wall (123) of the scintillator (120) and that generates electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), a microchannel plate (161; 162) comprising a plurality of channels (165), for multiplying the electrons (204) that have been generated by the photocathode section (130) and a detection system (171; 172) for detecting the electrons (204) that have been multiplied by means of the microchannel plate (161; 162).
    Type: Application
    Filed: May 21, 2012
    Publication date: April 17, 2014
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Publication number: 20140084428
    Abstract: A substrate of an integrated circuit has a first surface and an opposing second surface. A functionalized region is formed at least on the first surface. At least one electrical through-plating is provided as a through-hole which is continuously filled with an electrically conductive material and which runs from the first surface to the second surface through the substrate. To ensure that the through-plating can be reliably produced and is provided in a space-saving manner, the through-hole has at least one gradation on which a transition occurs from a smaller hole cross-section on the side of the first surface to a larger hole cross-section on the side of the second surface.
    Type: Application
    Filed: March 7, 2012
    Publication date: March 27, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Harry Hedler, Markus Schieber, Stefan Wirth, Jörg Zapf
  • Patent number: 8681944
    Abstract: A grid module of a scattered-radiation grid is disclosed. The scattered-radiation grid includes a number of grid modules disposed next to one another with a plurality of webs, especially for use in conjunction with a CT detector, a CT detector and a CT system with such a detector. In accordance with an embodiment of the invention, at the joining surfaces of the grid modules, the webs located there, compensating for an excessive reduction in scattered radiation, are embodied lower in their height than the maximum height of the other webs to be found in the grid module.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: March 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Stefan Wirth
  • Publication number: 20140042333
    Abstract: An x-ray detector is disclosed, in particular for a medical imaging device. The x-ray detector includes an anti-scatter grid, a measuring layer including a regular arrangement of measuring cells, and an evaluation unit. The anti-scatter grid covers the measuring layer and is aligned toward a specific focal point. The evaluation unit is configured to determine a focal position of an x-ray source relative to the focal point based on a local intensity difference of x-rays striking the measuring layer. A medical imaging device including the x-ray detector is also disclosed, along with a method for operating the x-ray detector.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 13, 2014
    Applicant: Siemens Aktiengesellschaft
    Inventors: Daniel NIEDERLÖHNER, Bodo REITZ, Stefan WIRTH
  • Patent number: 8618488
    Abstract: A method is disclosed, in at least one embodiment, for producing a scintillator for a radiation detector, in which the scintillator is produced in layers by depositing a scintillator material using a PVD process. By using a PVD process, owing to lower process temperatures of less than 300° C., it is possible to produce scintillators with decay times of less than 1.1 ns over large surfaces. In this way, the prerequisites for quantitative and energy-selective detection of individual radiation quanta can be satisfied even with fluxes of more than 108 X-ray quanta/mm2*s. At least one embodiment of the invention also relates to a scintillator produced by such a method.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: December 31, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Hackenschmied, Stefan Wirth
  • Patent number: 8552388
    Abstract: A production method for a sensor unit that includes a scintillator and a support plate on which a stack of collimator sheets is attached. The production method permits precise positioning of the collimator sheets in respect of the scintillator. In the process, individual scintillator strips are initially produced from a plurality of scintillator pixels adjoining one another along one dimension. Respectively one photodiode strip, made of a plurality of photodiodes in turn adjoining one another along one dimension, is attached to each of the individual scintillator strips along a longitudinal side in order to form a sensor strip. In an embodiment, respectively one photodiode is associated with respectively one scintillator pixel for readout purposes. The sensor strips are subsequently individually assembled on an outer side of the support plate facing away from the collimator sheets in order to form the scintillator.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 8, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Stefan Wirth
  • Publication number: 20130251111
    Abstract: A method is disclosed for energy calibrating quantum-counting x-ray detectors in an x-ray installation including at least two x-ray systems turnable around a center of rotation. A target, for producing x-ray fluorescence radiation, is positioned between the first x-ray source and first x-ray detector and irradiated with x-radiation of the first x-ray source in such a way that x-ray fluorescence radiation which strikes the second x-ray detector from the target is produced by the x-radiation of the first x-ray source. The second x-ray detector is then energy calibrated by way of the x-ray fluorescence radiation of the target. The first x-ray detector can be energy calibrated in the same way with the aid of the x-radiation of the second x-ray source. With the proposed method, the x-ray detectors of a dual-source CT x-ray installation can be calibrated with little expenditure under conditions close to those of the system.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 26, 2013
    Applicant: Siemens Aktiengesellschaft
    Inventors: Mario EICHENSEER, Steffen KAPPLER, Edgar KRAFT, Björn KREISLER, Daniel NIEDERLÖHNER, Stefan WIRTH
  • Patent number: 8536552
    Abstract: A collimator is disclosed for a radiation detector including at least three spacing elements arranged on a radiation exit face of the collimator. In at least one embodiment, they are embodied so as to mount the collimator in a stable manner with respect to a radiation converter of the radiation detector. The at least three spacing elements enable a very precise and stable alignment of the collimator in respect of the radiation converter despite manufacturing-related curves or unevennesses in the radiation exit face and/or the mounting surface on the part of the radiation converter. At least one embodiment of the invention also relates to a manufacturing method for such a collimator, as well as a method for manufacturing a radiation detector.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 17, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Freund, Claus Pohan, Gottfried Tschöpa, Stefan Wirth, Jan Wrege