Patents by Inventor Stefanie S. Jeffrey

Stefanie S. Jeffrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341384
    Abstract: Optical sensing of biological targets is provided using a metasurface having guided mode resonances with electric field profiles that extend out from the metasurface. Surface functionalization of such metasurfaces can be used to provide sensing for biological targets, such as nucleic acids, proteins, small molecules, extracellular vesicles, and whole cells. Binding of the target to the surface functionalization can affect the resonance wavelength of the guided mode resonances, thereby providing a sensitive assay for the biological targets.
    Type: Application
    Filed: October 8, 2021
    Publication date: October 26, 2023
    Inventors: Jennifer A. Dionne, John Abendroth, Mark Lawrence, Jack Hu, Fareeha Safir, Jefferson Dixon, Stefanie S. Jeffrey
  • Publication number: 20230324381
    Abstract: Improved surface enhanced Raman spectroscopy (SERS) of biological targets in liquids is provided. Nanoparticles are treated with a surfactant to provide an electrostatic attraction between the nanoparticles and the biological targets. The resulting clustering of the nanoparticles at the biological targets improves the SERS signal, Such SERS spectroscopy enables real time monitoring of the biological targets, thereby enabling a wide variety of assays etc.
    Type: Application
    Filed: September 1, 2021
    Publication date: October 12, 2023
    Inventors: Loza Fekadu Tadesse, Jack HU, Amr Ahmed Essawi Saleh, Stefanie S. Jeffrey, Jennifer A Dionne
  • Patent number: 10385893
    Abstract: An active microfluidic droplet generation device includes a droplet generation junction joining at least one continuous phase channel for carrying a ferrofluid, and a dispersed phase channel for carrying a dispersed phase (e.g., aqueous) flow. A miniature electropermanent magnet (EPM) upstream from the junction generates a magnetic field to modulate a flow rate of a ferrofluid in the continuous phase channel so that dispersed phase droplets are generated with volumes actively controlled on-demand and under continuous flow.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 20, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jose I. Padovani Blanco, Ali Mohamed Ibrahim, Yasser Hussein Anis, Stefanie S. Jeffrey, Roger T. Howe
  • Publication number: 20180093265
    Abstract: An active microfluidic droplet generation device includes a droplet generation junction joining at least one continuous phase channel for carrying a ferrofluid, and a dispersed phase channel for carrying a dispersed phase (e.g., aqueous) flow. A miniature electropermanent magnet (EPM) upstream from the junction generates a magnetic field to modulate a flow rate of a ferrofluid in the continuous phase channel so that dispersed phase droplets are generated with volumes actively controlled on-demand and under continuous flow.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Jose I. Padovani Blanco, Ali Mohamed Ibrahim, Yasser Hussein Anis, Stefanie S. Jeffrey, Roger T. Howe
  • Patent number: 9267943
    Abstract: Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 23, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Stefanie S. Jeffrey, Michael N. Mindrinos, R. Fabian Pease, Ashley Ann Powell, AmirAli Hajhossein Talasaz
  • Publication number: 20120045828
    Abstract: Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
    Type: Application
    Filed: October 28, 2011
    Publication date: February 23, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Stefanie S. Jeffrey, Michael N. Mindrinos, R. Fabian Pease, Ashley Ann Powell, AmirAli Hajhossein Talasaz
  • Patent number: 8071395
    Abstract: Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 6, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Stefanie S. Jeffrey, Michael N. Mindrinos, R. Fabian Pease, Ashley Ann Powell, AmirAli Hajhossein Talasaz
  • Publication number: 20090220979
    Abstract: Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
    Type: Application
    Filed: December 11, 2008
    Publication date: September 3, 2009
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Stefanie S. Jeffrey, Michael N. Mindrinos, R. Fabian Pease, Ashley Ann Powell, AmirAli Hajhossein Talasaz