Patents by Inventor Steffen Ried

Steffen Ried has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142785
    Abstract: A device for beam shaping of a laser beam includes a prism, a polarization rotator, and a thin-film polarizer. The prism is configured to split an incident laser beam into a first beam half and a second beam half. The first beam half is input coupled into the prism. The first beam half enters the prism at a first incidence side arranged at the Brewster angle vis-à-vis the incident laser beam. The first beam half input coupled into the prism is output coupled from the prism at an exit side of the prism at the Brewster angle. The thin-film polarizer is traversed by the first beam half output coupled from the prism. The polarization rotator rotates a polarization of the second beam half. The second beam half is reflected by the thin-film polarizer. The thin-film polarizer superimposes the first beam half and the second beam half.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Inventors: Thomas Rataj, Lukas Irmler, Alexander Killi, Steffen Ried, Christoph Wieschendorf
  • Patent number: 11791605
    Abstract: A diode laser arrangement for the cooling of and supply of electrical current to diode laser devices, having at least two stacks, each having a diode laser device which is configured to emit a laser beam, an upper cooling device, and a lower cooling device. The diode laser device is arranged on the upper cooling device and on the lower cooling device such that the diode laser device is arranged between the upper cooling device and the lower cooling device. The upper and lower cooling devices are in each case electrically connected to the diode laser device arranged therebetween. The upper cooling device and/or the lower cooling device of a stack are in each case formed as a microchannel cooler. The upper cooling device and/or the lower cooling device of a stack in each case have substantially no electrical insulation with respect to the diode laser device arranged therebetween.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: October 17, 2023
    Assignee: TRUMPF Photonics, Inc
    Inventors: Christoph Tillkorn, Stephan Strohmaier, Steffen Ried
  • Publication number: 20210126426
    Abstract: A diode laser arrangement for the cooling of and supply of electrical current to diode laser devices, having at least two stacks, each having a diode laser device which is configured to emit a laser beam, an upper cooling device, and a lower cooling device. The diode laser device is arranged on the upper cooling device and on the lower cooling device such that the diode laser device is arranged between the upper cooling device and the lower cooling device. The upper and lower cooling devices are in each case electrically connected to the diode laser device arranged therebetween. The upper cooling device and/or the lower cooling device of a stack are in each case formed as a microchannel cooler. The upper cooling device and/or the lower cooling device of a stack in each case have substantially no electrical insulation with respect to the diode laser device arranged therebetween.
    Type: Application
    Filed: June 18, 2019
    Publication date: April 29, 2021
    Inventors: Christoph Tillkorn, Stephan Strohmaier, Steffen Ried
  • Publication number: 20180205197
    Abstract: A variety of dense wavelength beam combining (DWBC) apparatuses are described herein that combine a plurality of individual input beams into a single output beam. DWBC apparatuses contemplated herein are open-loop configurations, i.e. configurations where the wavelength selective optics of a feedback generation system are decoupled from abeam combining system that combines a plurality of input beams each having a wavelength selected from a range of different wavelengths. Specifically, each constituent beam of the combined output beam produced by the beam combining system traverses an optical path that does not include the wavelength-selective optics of the feedback generation system. DWBC apparatuses contemplated herein further provide for matching the wavelength-dependent angular dispersion functions of optics of the feedback generation system with the wavelength-dependent angular dispersion functions of optics of the beam combining system.
    Type: Application
    Filed: October 23, 2014
    Publication date: July 19, 2018
    Inventors: Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Patent number: 9905993
    Abstract: Wavelength-selective external resonators can be used to greatly increase the output brightness of dense wavelength beam combining (DWBC) system beams by stabilizing the wavelengths of the beams emitted by the individual emitters of the DWBC laser source. The present invention pertains to external resonant cavities that utilize thin-film filtering elements as wavelength-selective elements in external resonators. The present invention further pertains to particular embodiments that utilize thin-film filtering elements in DWBC systems as both output beam coupling elements and wavelength selective elements. The present invention provides advantages over the prior art that include decreased cost, increased fidelity of wavelength selection, and increased wall plug efficiency.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 27, 2018
    Assignee: TRUMPF LASER GMBH
    Inventors: Rudolf Huber, Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Publication number: 20170222401
    Abstract: An external cavity laser apparatus includes a plurality of laser modules collectively including a plurality of beam emitters that collectively emit a plurality of emitted beams. Each laser module includes a base comprising a plurality of stepped platforms, one of the plurality of beam emitters being secured on each platform of the plurality of stepped platforms, and a plurality of module reflectors, one of the plurality of module reflectors being secured on each of the plurality of stepped platforms to receive radiation from a respective one of the plurality of beam emitters located on a same stepped platform. The external cavity laser apparatus further includes an angular dispersive optic and a polarized beam splitter.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventors: Hagen Zimer, Alexander Killi, Steffen Ried, Simon Nagel, Markus Ginter, Yufeng Li
  • Patent number: 9711950
    Abstract: An external cavity laser apparatus according to an embodiment of the invention is provided. The external cavity laser apparatus includes a plurality of beam emitters that collectively emit a plurality of emitted beams that each includes a primary component emitted beam. A first reflective element is configured to reflect the plurality of primary component emitted beams and a first polarizing optic disposed in the optical path of the plurality of primary component emitted beams is configured to rotate a polarization of each primary component emitted beam to produce a first rotated primary component beam having a first linear polarization and a second rotated primary component beam having a second linear polarization. A polarized beam splitter is configured to direct first feedback system output component beams into an output beam, and to direct second feedback system output component beams to the plurality of beam emitters as feedback beams.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: July 18, 2017
    Assignee: TRUMPF LASER GMBH
    Inventors: Hagen Zimer, Alexander Killi, Steffen Ried, Simon Nagel, Markus Ginter
  • Patent number: 9690107
    Abstract: A device for wavelength coupling of laser beams (2a, . . . 2n) with different wavelengths (?1, . . . ?n), comprising: at least one laser source for generating a plurality of laser beams (2a, . . . , 2n), and an overlapping device for spatial overlapping of the plurality of laser beams (2a, . . . , 2n) for forming an overlapped laser beam with a plurality of wavelengths (?1 . . . ?n). The device has a feedback device arranged between the laser source and the overlapping device for feeding a radiation proportion of the laser beams (2a, . . . , 2n) to be overlapped back to the laser source, the feedback device comprising a partially reflecting angle-dispersive optical element, in particular a partially reflecting diffraction grating. The overlapping device may, for example, be configured as a transmitting or reflecting diffraction grating whose optical properties are adapted to the optical properties of the partially reflecting diffraction grating to overlap the laser beams (2a, . . .
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 27, 2017
    Assignee: TRUMPF LASER GMBH
    Inventors: Viorel C. Negoita, Thilo Vethake, Alexander Killi, Christoph Tillkorn, Stephan Strohmaier, Steffen Ried, Yufeng Li, Haiyan An, Tobias Barnowski
  • Patent number: 9596034
    Abstract: The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 14, 2017
    Assignee: TRUMPF LASER GMBH
    Inventors: Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Publication number: 20160336714
    Abstract: An external cavity laser apparatus according to an embodiment of the invention is provided. The external cavity laser apparatus includes a plurality of beam emitters that collectively emit a plurality of emitted beams that each includes a primary component emitted beam. A first reflective element is configured to reflect the plurality of primary component emitted beams and a first polarizing optic disposed in the optical path of the plurality of primary component emitted beams is configured to rotate a polarization of each primary component emitted beam to produce a first rotated primary component beam having a first linear polarization and a second rotated primary component beam having a second linear polarization. A polarized beam splitter is configured to direct first feedback system output component beams into an output beam, and to direct second feedback system output component beams to the plurality of beam emitters as feedback beams.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Inventors: Hagen Zimer, Alexander Killi, Steffen Ried, Simon Nagel, Markus Ginter
  • Publication number: 20160285560
    Abstract: The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Publication number: 20160204570
    Abstract: Wavelength-selective external resonators can be used to greatly increase the output brightness of dense wavelength beam combining (DWBC) system beams by stabilizing the wavelengths of the beams emitted by the individual emitters of the DWBC laser source. The present invention pertains to external resonant cavities that utilize thin-film filtering elements as wavelength-selective elements in external resonators. The present invention further pertains to particular embodiments that utilize thin-film filtering elements in DWBC systems as both output beam coupling elements and wavelength selective elements. The present invention provides advantages over the prior art that include decreased cost, increased fidelity of wavelength selection, and increased wall plug efficiency.
    Type: Application
    Filed: February 26, 2016
    Publication date: July 14, 2016
    Inventors: Rudolf Huber, Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Patent number: 9391713
    Abstract: The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: July 12, 2016
    Assignee: TRUMPF LASER GMBH
    Inventors: Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Patent number: 9306369
    Abstract: Wavelength-selective external resonators can be used to greatly increase the output brightness of dense wavelength beam combining (DWBC) system beams by stabilizing the wavelengths of the beams emitted by the individual emitters of the DWBC laser source. The present invention pertains to external resonant cavities that utilize thin-film filtering elements as wavelength-selective elements in external resonators. The present invention further pertains to particular embodiments that utilize thin-film filtering elements in DWBC systems as both output beam coupling elements and wavelength selective elements. The present invention provides advantages over the prior art that include decreased cost, increased fidelity of wavelength selection, and increased wall plug efficiency.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: April 5, 2016
    Assignee: TRUMPF LASER GMBH
    Inventors: Rudolf Huber, Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Publication number: 20150146282
    Abstract: Wavelength-selective external resonators can be used to greatly increase the output brightness of dense wavelength beam combining (DWBC) system beams by stabilizing the wavelengths of the beams emitted by the individual emitters of the DWBC laser source. The present invention pertains to external resonant cavities that utilize thin-film filtering elements as wavelength-selective elements in external resonators. The present invention further pertains to particular embodiments that utilize thin-film filtering elements in DWBC systems as both output beam coupling elements and wavelength selective elements. The present invention provides advantages over the prior art that include decreased cost, increased fidelity of wavelength selection, and increased wall plug efficiency.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Rudolf Huber, Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Publication number: 20150104180
    Abstract: The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 16, 2015
    Inventors: Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried