Patents by Inventor Stephan A. Cohen

Stephan A. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8492880
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: July 23, 2013
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, Jr., Son V. Nguyen, Li-Qun Xia
  • Publication number: 20130049207
    Abstract: A method of annealing a semiconductor and a semiconductor. The method of annealing including heating the semiconductor to a first temperature for a first period of time sufficient to remove physically-adsorbed water from the semiconductor and heating the semiconductor to a second temperature, the second temperature being greater than the first temperature, for a period of time sufficient to remove chemically-adsorbed water from the semiconductor. A semiconductor device including a plurality of metal conductors, and a dielectric including regions separating the plurality of metal conductors, the regions including an upper interface and a lower bulk region, the upper interface having a density greater than a density of the lower bulk region.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Eric G. Liniger, Griselda Bonilla, Pak Leung, Stephan A. Cohen, Stephen M. Gates, Thomas M. Shaw
  • Patent number: 8362596
    Abstract: A dielectric capping layer having a dielectric constant of less than 4.2 is provided that exhibits a higher mechanical and electrical stability to UV and/or E-Beam radiation as compared to conventional dielectric capping layers. Also, the dielectric capping layer maintains a consistent compressive stress upon post-deposition treatments. The dielectric capping layer includes a tri-layered dielectric material in which at least one of the layers has good oxidation resistance, is resistance to conductive metal diffusion, and exhibits high mechanical stability under at least UV curing. The low k dielectric capping layer also includes nitrogen content layers that contain electron donors and double bond electrons. The low k dielectric capping layer also exhibits a high compressive stress and high modulus and is stable under post-deposition curing treatments, which leads to less film and device cracking and improved device reliability.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, Jr., Xiao H. Liu, Son V. Nguyen, Thomas M. Shaw, Hosadurga Shobha
  • Publication number: 20130005146
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicants: Applied Materials, Inc., International Business Machines Corporation
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Son Nguyen, Li-Qun Xia
  • Publication number: 20120313194
    Abstract: A switching device including a first dielectric layer having a first top surface, two conductive features embedded in the first dielectric layer, each conductive feature having a second top surface that is substantially coplanar with the first top surface of the first dielectric layer, and a set of discrete islands of a low diffusion mobility metal between the two conductive features. The discrete islands of the low diffusion mobility metal may be either on the first top surface or embedded in the first dielectric layer. The electric conductivity across the two conductive features of the switching device increases when a prescribed voltage is applied to the two conductive features. A method of forming such a switching device is also provided.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Stephan A. Cohen, Baozhen Li
  • Publication number: 20120248617
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Applicants: APPLIED MATERIALS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Son V. Nguyen, Li-Qun Xia
  • Publication number: 20110012238
    Abstract: A dielectric capping layer having a dielectric constant of less than 4.2 is provided that exhibits a higher mechanical and electrical stability to UV and/or E-Beam radiation as compared to conventional dielectric capping layers. Also, the dielectric capping layer maintains a consistent compressive stress upon post-deposition treatments. The dielectric capping layer includes a tri-layered dielectric material in which at least one of the layers has good oxidation resistance, is resistance to conductive metal diffusion, and exhibits high mechanical stability under at least UV curing. The low k dielectric capping layer also includes nitrogen content layers that contain electron donors and double bond electrons. The low k dielectric capping layer also exhibits a high compressive stress and high modulus and is stable under post-deposition curing treatments, which leads to less film and device cracking and improved device reliability.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Xiao H. Liu, Son V. Nguyen, Thomas M. Shaw, Hosadurga Shobha
  • Publication number: 20080230875
    Abstract: A method of fabricating a dielectric film comprising atoms of Si, C, O and H (hereinafter SiCOH) that has improved insulating properties as compared with prior art dielectric films, including prior art SiCOH dielectric films that are not subjected to the inventive deep ultra-violet (DUV) is disclosed. The improved properties include reduced current leakage which is achieved without adversely affecting (increasing) the dielectric constant of the SiCOH dielectric film. In accordance with the present invention, a SiCOH dielectric film exhibiting reduced current leakage and improved reliability is obtained by subjecting an as deposited SiCOH dielectric film to a DUV laser anneal. The DUV laser anneal step of the present invention likely removes the weakly bonded C from the film, thus improving leakage current.
    Type: Application
    Filed: June 2, 2008
    Publication date: September 25, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alessandro C. Callegari, Stephan A. Cohen, Fuad E. Doany
  • Publication number: 20070237970
    Abstract: A diffusion barrier useful in semiconductor electronic devices, such as multi-level interconnect wiring structures, is provided. The diffusion barrier is characterized as having a low-dielectric constant of less than 3.5, preferably less than 3.0, as well as being capable of substantially preventing Cu and/or oxygen from diffusing into the active device areas of the electronic device. Since the diffusion barrier has a low-dielectric constant, the diffusion barrier has only a minor effect on the effective dielectric constant of the interconnect structure. The low-k diffusion battier includes atoms of Si, C, H and N. The N atoms are non-uniformly distributed within the low-k diffusion barrier. Optionally, the low-k diffusion barrier may include atoms of Ge, O, halogens such as F or any combination thereof.
    Type: Application
    Filed: June 15, 2007
    Publication date: October 11, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephan Cohen, Stephen Gates, Alfred Grill, Vishnubhai Patel
  • Patent number: 7256146
    Abstract: The present invention comprises an interconnect structure including a metal, interlayer dielectric and a ceramic diffusion barrier formed therebetween, where the ceramic diffusion barrier has a composition SivNwCxOyHz, where 0.1?v?0.9, 0?w?0.5, 0.01?x?0.9, 0?y?0.7, 0.01?z?0.8 for v+w+x+y+z=1. The ceramic diffusion barrier acts as a diffusion barrier to metals, i.e., copper. The present invention also comprises a method for forming the inventive ceramic diffusion barrier including the steps depositing a polymeric preceramic having a composition SivNwCxOyHz, where 0.1<v<0.8, 0<w<0.8, 0.05<x<0.8, 0<y<0.3, 0.05<z<0.8 for v+w+x+y+z=1 and then converting the polymeric preceramic layer into a ceramic diffusion barrier by thermal methods.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Jeffrey C. Hedrick, Elbert E. Huang, Dirk Pfeiffer
  • Patent number: 7252875
    Abstract: A diffusion barrier useful in semiconductor electronic devices, such as multi-level interconnect wiring structures, is provided. The diffusion barrier is characterized as having a low-dielectric constant of less than 3.5, preferably less than 3.0, as well as being capable of substantially preventing Cu and/or oxygen from diffusing into the active device areas of the electronic device. Since the diffusion barrier has a low-dielectric constant, the diffusion barrier has only a minor effect on the effective dielectric constant of the interconnect structure. The low-k diffusion barrier includes atoms of Si, C, H and N. The N atoms are non-uniformly distributed within the low-k diffusion barrier. Optionally, the low-k diffusion barrier may include atoms of Ge, O, halogens such as F or any combination thereof.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Alfred Grill, Vishnubhai V. Patel
  • Patent number: 7223670
    Abstract: A method of fabricating a dielectric film comprising atoms of Si, C, O and H (hereinafter SiCOH) that has improved insulating properties as compared with prior art dielectric films, including prior art SiCOH dielectric films that are not subjected to the inventive deep ultra-violet (DUV) is disclosed. The improved properties include reduced current leakage which is achieved without adversely affecting (increasing) the dielectric constant of the SiCOH dielectric film. In accordance with the present invention, a SiCOH dielectric film exhibiting reduced current leakage and improved reliability is obtained by subjecting an as deposited SiCOH dielectric film to a DUV laser anneal. The DUV laser anneal step of the present invention likely removes the weakly bonded C from the film, thus improving leakage current.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: May 29, 2007
    Assignee: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Stephan A. Cohen, Fuad E. Doany
  • Publication number: 20060040513
    Abstract: A method of fabricating a dielectric film comprising atoms of Si, C, O and H (hereinafter SiCOH) that has improved insulating properties as compared with prior art dielectric films, including prior art SiCOH dielectric films that are not subjected to the inventive deep ultra-violet (DUV) is disclosed. The improved properties include reduced current leakage which is achieved without adversely affecting (increasing) the dielectric constant of the SiCOH dielectric film. In accordance with the present invention, a SiCOH dielectric film exhibiting reduced current leakage and improved reliability is obtained by subjecting an as deposited SiCOH dielectric film to a DUV laser anneal. The DUV laser anneal step of the present invention likely removes the weakly bonded C from the film, thus improving leakage current.
    Type: Application
    Filed: August 20, 2004
    Publication date: February 23, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alessandro Callegari, Stephan Cohen, Fuad Doany
  • Publication number: 20050206004
    Abstract: The present invention comprises an interconnect structure including a metal, interlayer dielectric and a ceramic diffusion barrier formed therebetween, where the ceramic diffusion barrier has a composition SivNwCxOyHz, where 0.1?v?0.9, 0?w?0.5, 0.01?x?0.9, 0?y?0.7, 0.01?z?0.8 for v+w+x+y+z=1. The ceramic diffusion barrier acts as a diffusion barrier to metals, i.e., copper. The present invention also comprises a method for forming the inventive ceramic diffusion barrier including the steps depositing a polymeric preceramic having a composition SivNwCxOyHz, where 0.1<v<0.8, 0<w<0.8, 0.05<x<0.8, 0<y<0.3, 0.05<z<0.8 for v+w+x+y+z=1 and then converting the polymeric preceramic layer into a ceramic diffusion barrier by thermal methods.
    Type: Application
    Filed: May 13, 2005
    Publication date: September 22, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephan Cohen, Stephen Gates, Jeffrey Hedrick, Elbert Huang, Dirk Pfeiffer
  • Patent number: 6940173
    Abstract: The present invention comprises an interconnect structure including a metal, interlayer dielectric and a ceramic diffusion barrier formed therebetween, where the ceramic diffusion barrier has a composition SivNwCxOyHz, where 0.1?v?0.9, 0?w?0.5, 0.01?0.5, 0.01?x?0.9,0?y?0.7,0.01?z?0.8 for v+w+x+y+z=1. The ceramic diffusion barrier acts as a diffusion barrier to metals, i.e., copper. The present invention also comprises a method for forming the inventive ceramic diffusion barrier including the steps depositing a polymeric preceramic having a composition SivNwCxOyHz, where 0.1<v<0.8, 0<w<0.8, 0.05<x<0.8, 0<y<0.3, 0.05<z<0.8 for v+w+x+y+z=1 and then converting the polymeric preceramic layer into a ceramic diffusion barrier by thermal methods.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Jeffrey C. Hedrick, Elbert E. Huang, Dirk Pfeiffer
  • Publication number: 20050087876
    Abstract: The present invention comprises an interconnect structure including a metal, interlayer dielectric and a ceramic diffusion barrier formed therebetween, where the ceramic diffusion barrier has a composition SivNwCxOyHz, where 0.1?v?0.9, 0?w?0.5, 0.01?x?0.9, 0?y?0.7, 0.01?z?0.8 for v+w+x+y+z=1. The ceramic diffusion barrier acts as a diffusion barrier to metals, i.e., copper. The present invention also comprises a method for forming the inventive ceramic diffusion barrier including the steps depositing a polymeric preceramic having a composition SivNwCxOyHz, where 0.1<v<0.8, 0<w<0.8, 0.05<x<0.8, 0<y<0.3, 0.05<z<0.8 for v+w+x+y+z=1 and then converting the polymeric preceramic layer into a ceramic diffusion barrier by thermal methods.
    Type: Application
    Filed: July 25, 2003
    Publication date: April 28, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephan Cohen, Stephen Gates, Jeffrey Hedrick, Elbert Huang, Dirk Pfeiffer
  • Publication number: 20040115407
    Abstract: A diffusion barrier useful in semiconductor electronic devices, such as multi-level interconnect wiring structures, is provided. The diffusion barrier is characterized as having a low-dielectric constant of less than 3.5, preferably less than 3.0, as well as being capable of substantially preventing Cu and/or oxygen from diffusing into the active device areas of the electronic device. Since the diffusion barrier has a low-dielectric constant, the diffusion barrier has only a minor effect on the effective dielectric constant of the interconnect structure. The low-k diffusion barrier includes atoms of Si, C, H and N. The N atoms are non-uniformly distributed within the low-k diffusion barrier. Optionally, the low-k diffusion barrier may include atoms of Ge, O, halogens such as F or any combination thereof.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Applicant: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Alfred Grill, Vishnubhai V. Patel
  • Patent number: 6726996
    Abstract: A diffusion barrier that has a low dielectric constant, k, yet resistant to oxygen and/or moisture permeability is provided. The diffusion barrier includes a dielectric stack having at least two or more dielectric films, each film having a dielectric constant of about 8 or less, wherein the dielectric stack comprises alternating films composed of a high-permeability material and a low-permeability material. A semiconductor structure including substrate having at least one wiring region and the inventive diffusion barrier formed on a surface of the substrate is also provided.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: April 27, 2004
    Assignee: International Business Machines Corporation
    Inventors: Edward Paul Barth, Stephan A. Cohen, Chester Dziobkowski, John Anthony Fitzsimmons, Stephen McConnell Gates, Thomas Henry Ivers, Sampath Purushothaman, Darryl D. Restaino, Horatio Seymour Wildman
  • Publication number: 20020172811
    Abstract: A diffusion barrier that has a low dielectric constant, k, yet resistant to oxygen and/or moisture permeability is provided. The diffusion barrier includes a dielectric stack having at least two or more dielectric films, each film having a dielectric constant of about 8 or less, wherein the dielectric stack comprises alternating films composed of a high-permeability material and a low-permeability material. A semiconductor structure including substrate having at least one wiring region and the inventive diffusion barrier formed on a surface of the substrate is also provided.
    Type: Application
    Filed: May 16, 2001
    Publication date: November 21, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward Paul Barth, Stephan A. Cohen, Chester Dziobkowski, John Anthony Fitzsimmons, Stephen McConnell Gates, Thomas Henry Ivers, Sampath Purushothaman, Darryl D. Restaino, Horatio Seymour Wildman
  • Patent number: 6452276
    Abstract: The present invention is directed to an alpha-W layer which is employed in interconnect structures such as trench capacitors or damascene wiring levels as a diffusion barrier layer. The alpha-W layer is a single phased material that is formed by a low temperature/pressure chemical vapor deposition process using tungsten hexacarbonyl, W(CO)6, as the source material.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: September 17, 2002
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Fenton R. McFeely, Cevdet I. Noyan, Kenneth P. Rodbell, John J. Yurkas, Robert Rosenberg