Patents by Inventor Stephan Haringer

Stephan Haringer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976379
    Abstract: Crystal pulling systems having a fluid-cooled exhaust tube are disclosed. The fluid-cooled exhaust tube extends through the reactor housing and into the reaction chamber. In some embodiments, the exhaust tube extends through the bottom of the crystal puller housing and through a bottom heat shield within the ingot puller housing.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: May 7, 2024
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Marco Zardoni, Mauro Dioda, Hariprasad Sreedharamurthy
  • Patent number: 11795571
    Abstract: Methods for growing a single crystal silicon ingot are disclosed. A dynamic state chart that monitors a plurality of ingot growth parameters may be produced and used during production of single crystal silicon ingots. In some embodiments, the dynamic state chart is a dynamic circle map chart having a plurality of sectors with each sector monitoring an ingot growth parameter.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: October 24, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Giorgio Agostini, Stephan Haringer, Marco Zardoni
  • Publication number: 20230160094
    Abstract: Methods for producing a single crystal silicon ingot are disclosed. The ingot is doped with boron using solid-phase boric acid as the source of boron. Boric acid may be used to counter-dope the ingot during ingot growth. Ingot puller apparatus that use a solid-phase dopant are also disclosed. The solid-phase dopant may be disposed in a receptacle that is moved closer to the surface of the melt or a vaporization unit may be used to produce a dopant gas from the solid-phase dopant.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 25, 2023
    Inventors: William L. Luter, Hariprasad Sreedharamurthy, Stephan Haringer, Richard J. Phillips, Nan Zhang, Yu-Chaio Wu
  • Publication number: 20230160093
    Abstract: Methods for producing a single crystal silicon ingot are disclosed. The ingot is doped with boron using solid-phase boric acid as the source of boron. Boric acid may be used to counter-dope the ingot during ingot growth. Ingot puller apparatus that use a solid-phase dopant are also disclosed. The solid-phase dopant may be disposed in a receptacle that is moved closer to the surface of the melt or a vaporization unit may be used to produce a dopant gas from the solid-phase dopant.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 25, 2023
    Inventors: William L. Luter, Hariprasad Sreedharamurthy, Stephan Haringer, Richard J. Phillips, Nan Zhang, Yu-Chaio Wu
  • Patent number: 11585010
    Abstract: Methods for producing a single crystal silicon ingot are disclosed. The ingot is doped with boron using solid-phase boric acid as the source of boron. Boric acid may be used to counter-dope the ingot during ingot growth. Ingot puller apparatus that use a solid-phase dopant are also disclosed. The solid-phase dopant may be disposed in a receptacle that is moved closer to the surface of the melt or a vaporization unit may be used to produce a dopant gas from the solid-phase dopant.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: February 21, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: William L. Luter, Hariprasad Sreedharamurthy, Stephan Haringer, Richard J. Phillips, Nan Zhang, Yu-Chaio Wu
  • Patent number: 11499245
    Abstract: Additive feed systems for feeding at least two different additives to silicon disposed within a crucible of an ingot puller apparatus are disclosed. The additive feed system may include first and second feed trays which are caused to vibrate to move first or second additive from a canister in which the additive is stored to another vessel in which the amount of first or second additive added to the vessel is sensed. The additive is discharged from the vessel into an additive feed tube through which the additive enters the crucible.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 15, 2022
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Marco Zardoni, Giancarlo Zago, Giorgio Agostini, Stephan Haringer, James Eoff
  • Publication number: 20220333268
    Abstract: Methods for growing a single crystal silicon ingot are disclosed. A dynamic state chart that monitors a plurality of ingot growth parameters may be produced and used during production of single crystal silicon ingots. In some embodiments, the dynamic state chart is a dynamic circle map chart having a plurality of sectors with each sector monitoring an ingot growth parameter.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Inventors: Giorgio Agostini, Stephan Haringer, Marco Zardoni
  • Patent number: 11414778
    Abstract: Methods for growing a single crystal silicon ingot are disclosed. A dynamic state chart that monitors a plurality of ingot growth parameters may be produced and used during production of single crystal silicon ingots. In some embodiments, the dynamic state chart is a dynamic circle map chart having a plurality of sectors with each sector monitoring an ingot growth parameter.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: August 16, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Giorgio Agostini, Stephan Haringer, Marco Zardoni
  • Publication number: 20220205130
    Abstract: Additive feed systems for feeding at least two different additives to silicon disposed within a crucible of an ingot puller apparatus are disclosed. The additive feed system may include first and second feed trays which are caused to vibrate to move first or second additive from a canister in which the additive is stored to another vessel in which the amount of first or second additive added to the vessel is sensed. The additive is discharged from the vessel into an additive feed tube through which the additive enters the crucible.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 30, 2022
    Inventors: Marco Zardoni, Giancarlo Zago, Giorgio Agostini, Stephan Haringer, James Eoff
  • Patent number: 11346016
    Abstract: A method of growing a doped monocrystalline ingot using a crystal growing system is provided. The crystal growing system includes a growth chamber, a dopant feeding device, and a feed tube. The method includes preparing a melt of semiconductor or solar-grade material in a crucible disposed within the growth chamber, introducing a solid dopant into the feed tube with the dopant feeding device, melting the solid dopant within the feed tube to a form a liquid dopant, introducing the liquid dopant into the melt below a surface of the melt, and growing a monocrystalline ingot from the melt by contacting the melt with a seed crystal and pulling the seed crystal away from the melt.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 31, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Marco D'Angella, Mauro Diodà
  • Publication number: 20220136129
    Abstract: Crystal pulling systems having a fluid-cooled exhaust tube are disclosed. The fluid-cooled exhaust tube extends through the reactor housing and into the reaction chamber. In some embodiments, the exhaust tube extends through the bottom of the crystal puller housing and through a bottom heat shield within the ingot puller housing.
    Type: Application
    Filed: October 7, 2021
    Publication date: May 5, 2022
    Inventors: Stephan Haringer, Marco Zardoni, Mauro Dioda, Hariprasad Sreedharamurthy
  • Patent number: 11299819
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 12, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Patent number: 11085127
    Abstract: A method of growing a doped monocrystalline ingot using a crystal growing system is provided. The crystal growing system includes a growth chamber, a dopant feeding device, and a feed tube. The method includes preparing a melt of semiconductor or solar-grade material in a crucible disposed within the growth chamber, introducing a solid dopant into the feed tube with the dopant feeding device, melting the solid dopant within the feed tube to a form a liquid dopant, introducing the liquid dopant into the melt below a surface of the melt, and growing a monocrystalline ingot from the melt by contacting the melt with a seed crystal and pulling the seed crystal away from the melt.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 10, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Marco D'Angella, Mauro Diodà
  • Patent number: 11028499
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Patent number: 11028500
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Patent number: 10968533
    Abstract: A system for growing silicon crystal structures includes a housing defining a growth chamber and a feed system connected to the housing for delivering silicon particles to the growth chamber. The feed system includes a container for holding the silicon particles. The container includes an outlet for discharging the silicon particles. The feed system also includes a channel connected to the outlet such that silicon particles discharged from the container flow through the channel. The feed system further includes a separation valve connected to the channel and to the housing. The separation valve is configured such that a portion of the feed system rotates relative to the housing.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: April 6, 2021
    Assignee: Corner Star Limited
    Inventors: Stephan Haringer, Gianni Dell'Amico, Giancarlo Zago, Renzo Odorizzi, Giorgio Agostini, Marco Zardoni
  • Publication number: 20210032769
    Abstract: Methods for growing a single crystal silicon ingot are disclosed. A dynamic state chart that monitors a plurality of ingot growth parameters may be produced and used during production of single crystal silicon ingots. In some embodiments, the dynamic state chart is a dynamic circle map chart having a plurality of sectors with each sector monitoring an ingot growth parameter.
    Type: Application
    Filed: May 27, 2020
    Publication date: February 4, 2021
    Inventors: Giorgio Agostini, Stephan Haringer, Marco Zardoni
  • Patent number: 10889913
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 12, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Publication number: 20200407869
    Abstract: Methods for producing a single crystal silicon ingot are disclosed. The ingot is doped with boron using solid-phase boric acid as the source of boron. Boric acid may be used to counter-dope the ingot during ingot growth. Ingot puller apparatus that use a solid-phase dopant are also disclosed. The solid-phase dopant may be disposed in a receptacle that is moved closer to the surface of the melt or a vaporization unit may be used to produce a dopant gas from the solid-phase dopant.
    Type: Application
    Filed: May 15, 2020
    Publication date: December 31, 2020
    Inventors: William L. Luter, Hariprasad Sreedharamurthy, Stephan Haringer, Richard J. Phillips, Nan Zhang, Yu-Chaio Wu
  • Publication number: 20200199772
    Abstract: A method of growing a doped monocrystalline ingot using a crystal growing system is provided. The crystal growing system includes a growth chamber, a dopant feeding device, and a feed tube. The method includes preparing a melt of semiconductor or solar-grade material in a crucible disposed within the growth chamber, introducing a solid dopant into the feed tube with the dopant feeding device, melting the solid dopant within the feed tube to a form a liquid dopant, introducing the liquid dopant into the melt below a surface of the melt, and growing a monocrystalline ingot from the melt by contacting the melt with a seed crystal and pulling the seed crystal away from the melt.
    Type: Application
    Filed: December 28, 2018
    Publication date: June 25, 2020
    Inventors: Stephan Haringer, Marco D'Angella, Mauro Diodà