Patents by Inventor Stephan Kellner

Stephan Kellner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143075
    Abstract: An exhaust gas aftertreatment system for an internal combustion engine comprises an exhaust gas system with an exhaust gas channel in which at least two exhaust gas aftertreatment components for the selective, catalytic reduction of nitrogen oxides are arranged. Downstream from the first exhaust gas aftertreatment component and upstream from the second exhaust gas aftertreatment component is a burner with which the exhaust gas can be heated up before it enters the second exhaust gas aftertreatment component. Downstream from the second exhaust gas aftertreatment component is an oxidation catalytic converter that converts unburned hydrocarbons. In a method for exhaust gas aftertreatment in an internal combustion engine having such an exhaust gas aftertreatment system, the exhaust gas from the internal combustion engine is heated up by the burner in order to heat up the second exhaust gas aftertreatment component for the selective, catalytic reduction of nitrogen oxides.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 12, 2021
    Assignee: VOLKSWAGEN AKIIHNGESELLSCHAFT
    Inventors: Johannes Bunkus, Stephan Kellner
  • Publication number: 20200173331
    Abstract: An exhaust gas aftertreatment system for an internal combustion engine comprises an exhaust gas system with an exhaust gas channel in which at least two exhaust gas aftertreatment components for the selective, catalytic reduction of nitrogen oxides are arranged. Downstream from the first exhaust gas aftertreatment component and upstream from the second exhaust gas aftertreatment component is a burner with which the exhaust gas can be heated up before it enters the second exhaust gas aftertreatment component. Downstream from the second exhaust gas aftertreatment component for the selective, catalytic reduction of nitrogen oxides is an oxidation catalytic converter that converts unburned hydrocarbons.
    Type: Application
    Filed: November 27, 2019
    Publication date: June 4, 2020
    Applicant: VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventors: Johannes BUNKUS, Stephan KELLNER
  • Patent number: 10088754
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20170192361
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9606441
    Abstract: A microlithography illumination system includes a first raster arrangement including a first plurality of bundle-forming raster elements arranged in or adjacent a first plane of the illumination system. The first plurality of bundle-forming raster elements is configured to generate a raster arrangement of secondary light sources. The illumination system also includes a transmission optics configured to superimpose transmission of the illumination light of the secondary light sources into the object field. The transmission optics includes a second raster arrangement comprising a second plurality of bundle-forming raster elements. The illumination system further includes a displacement device configured to displace a displaceable segment of the first raster arrangement relative to the second raster arrangement. The displaceable segment includes exactly one of the raster elements, a group of several raster elements, a raster column, a raster area, or several groups of raster elements.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 28, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9448490
    Abstract: An EUV lithography system 1 comprises an EUV beam path and a monitor beam path 51. The EUV beam path comprises a mirror system 13, which has a base and a multiplicity of mirror elements 17 having concave mirror surfaces, the orientation of which relative to the base is respectively adjustable. The monitor beam path 51 comprises at least one monitor radiation source 53, a screen 71, the mirror system 13, which is arranged in the monitor beam path 51 between the monitor radiation source 53 and the screen 71, and a spatially resolving detector 77. In this case, each of a plurality of the mirror elements generates an image of the monitor radiation source in an image plane assigned to the respective mirror elements, distances B between the image planes assigned to the mirror elements and the screen have a maximum distance, distances A between each of the plurality of mirror elements and the image plane assigned to it have a minimum distance, and the maximum distance B is less than half of the minimum distance A.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: September 20, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Udo Dinger, Lars Wischmeier, Markus Hauf, Stephan Kellner, Igor Gurevich, Markus Deguenther
  • Publication number: 20160161858
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9280060
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 8, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20150022798
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 22, 2015
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 8873023
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: October 28, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20130265560
    Abstract: An EUV lithography system 1 comprises an EUV beam path and a monitor beam path 51. The EUV beam path comprises a mirror system 13, which has a base and a multiplicity of mirror elements 17 having concave mirror surfaces, the orientation of which relative to the base is respectively adjustable. The monitor beam path 51 comprises at least one monitor radiation source 53, a screen 71, the mirror system 13, which is arranged in the monitor beam path 51 between the monitor radiation source 53 and the screen 71, and a spatially resolving detector 77. In this case, each of a plurality of the mirror elements generates an image of the monitor radiation source in an image plane assigned to the respective mirror elements, distances B between the image planes assigned to the mirror elements and the screen have a maximum distance, distances A between each of the plurality of mirror elements and the image plane assigned to it have a minimum distance, and the maximum distance B is less than half of the minimum distance A.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Udo Dinger, Lars Wischmeier, Markus Hauf, Stephan Kellner, Igor Gurevich, Markus Deguenther
  • Publication number: 20120019796
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 26, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther