Patents by Inventor Stephan Schlitter

Stephan Schlitter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7449422
    Abstract: The present invention relates to a solid, acid catalyst for the preparation of polytetrahydrofuran, polytetrahydrofuran copolymers, diesters or monoesters of these polymers by polymerization of tetrahydrofuran in the presence of at least one telogen and/or comonomer, which has a BET surface area of at least 160 m2/g and an acid center density of at least 0.05 mmol/g for pKa values of from 1 to 6, to a process for preparing it and to a process for the polymerization of cyclic ethers over this catalyst.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: November 11, 2008
    Assignee: BASF SE
    Inventors: Stephan Schlitter, Martin Haubner, Michael Hesse, Stefan Käshammer, Rolf Pinkos, Christoph Sigwart
  • Patent number: 7442810
    Abstract: A process for variably preparing mixtures of optionally alkyl-substituted BDO, GBL and THF by two-stage hydrogenation in the gas phase of C4 dicarboxylic acids and/or derivatives thereof, which comprises a) hydrogenating in a gas phase a gas stream of C4 dicarboxylic acids and/or derivatives thereof over a particular catalyst at a particular pressure and temperature to give a stream mainly containing of optionally alkyl-substituted GBL and THF, b) removing any succinct anhydride, c) converting the products remaining predominantly in the gas phase in the partial condensation, THF, water and GBL to give a stream comprising a mixture of BDO, GBL and THF, d) removing the hydrogen from the products and recycling it into the hydrogenation, e) distillatively separating the products, THF, BDO, GBL and water, if appropriate recycling a GBL-rich stream or if appropriate discharging it, and working up BDO, THF and GBL distillatively, and setting the ratio of the products, THF, GBL and BDO, relative to one another wi
    Type: Grant
    Filed: December 4, 2004
    Date of Patent: October 28, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Roesch, Rolf Pinkos, Michael Hesse, Stephan Schlitter, Henrik Junicke, Olga Schubert, Alexander Weck, Gunther Windecker
  • Publication number: 20080167506
    Abstract: The invention relates to a process for preparing polymethylol compounds of the formula (I) (HOCH2)2—C—R2 ??(I) where the radicals R are each, independently of one another, a further methylol group or an alkyl group having from 1 to 22 carbon atoms or an aryl or aralkyl group having from 6 to 22 carbon atoms, by condensation of aldehydes having from 2 to 24 carbon atoms with formaldehyde in an aldol reaction using tertiary amines as catalyst to form alkanals of the formula (II) where the radicals R each independently have one of the abovementioned meanings, and subsequent hydrogenation of the latter. The particular inventive feature of this process is that the aldol reaction is carried out using an aqueous formaldehyde solution having a formic acid content of <150 ppm and preferably <100 ppm. In this way of carrying out the process, the formation of by-products can advantageously be prevented in a targeted manner and the yield of the desired polymethylol compound can thereby be increased.
    Type: Application
    Filed: April 30, 2007
    Publication date: July 10, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Timan Sirch, Michael Steiniger, Steffen Maas, Stefan Rittinger, Stephan Schlitter, Maria Guixa, Todd C. Spengeman, Jeffrey T. Andress
  • Patent number: 7388116
    Abstract: Process for the catalytic hydrogenation of methylolalkanals of the general formula where R1 and R2 are each, independently of one another, a further methylol group or an alkyl group having from 1 to 22 carbon atoms or an aryl or aralkyl group having from 6 to 33 carbon atoms, in the liquid phase by means of hydrogen over a hydrogenation catalyst, wherein hydrogen is used in a molar ratio to methylolalkanal of greater than 1.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: June 17, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Steffen Maas, Thorsten Johann, Michael Koch, Tilman Sirch, Stephan Schlitter, Stefan Rittinger, Michael Steiniger, Todd C Spengeman
  • Publication number: 20080108786
    Abstract: The present invention relates to a solid, acid catalyst for the preparation of polytetrahydrofuran, polytetrahydrofuran copolymers, diesters or monoesters of these polymers by polymerization of tetrahydrofuran in the presence of at least one telogen and/or comonomer, which has a BET surface area of at least 160 m2/g and an acid center density of at least 0.05 mmol/g for pKa values of from 1 to 6, to a process for preparing it and to a process for the polymerization of cyclic ethers over this catalyst.
    Type: Application
    Filed: January 10, 2008
    Publication date: May 8, 2008
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Stephan Schlitter, Martin Haubner, Michael Hesse, Stefan Kashammer, Rolf Pinkos, Christoph Sigwart
  • Publication number: 20080097112
    Abstract: A catalyst for the hydrogenation of C4-dicarboxylic acids and/or derivatives thereof, preferably maleic anhydride, in the gas phase comprises a) 20-94% by weight of copper oxide (CuO), preferably 40-92% by weight of CuO, in particular 60-90% by weight of CuO, and b) 0.005-5% by weight, preferably 0.01-3% by weight, in particular 0.05-2% by weight, palladium and/or a palladium compound (calculated as metallic palladium) and c) 2-79.995% by weight, preferably 5-59.99% by weight, in particular 8-39.95% by weight, of an oxidic support selected from the group consisting of the oxides of Al, Si, Zn, La, Ce, the elements of groups IIIA to VIIIA and of groups IA and IIA of the Periodic Table of the Elements.
    Type: Application
    Filed: May 25, 2006
    Publication date: April 24, 2008
    Inventors: Stephan Schlitter, Holger Borchert, Michael Hesse, Markus Schubert, Nils Bottke, Rolf-Hartmuth Fischer, Markus Rösch, Gunnar Heydrich, Alexander Week
  • Patent number: 7351311
    Abstract: Crude water-containing tetrahydrofuran is purified by passing the crude tetrahydrofuran through three distillation columns, withdrawing water from the bottom of the first column, recycling water-containing tetrahydrofuran from the top of the second column into the first column, passing a sidestream of the first column into the second column, recycling the bottom product of the third column into the first column, and withdrawing a distillate at the top of the first column. Additionally, a sidestream of the second column is passed into the third column and the purified tetrahydrofuran is recovered as the top product of the third column.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: April 1, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Gunther Windecker, Alexander Weck, Rolf-Hartmuth Fischer, Markus Rösch, Nils Bottke, Michael Hesse, Stephan Schlitter, Holger Borchert
  • Publication number: 20080064883
    Abstract: Catalyst in the form of an extrudate which comprises from 5 to 85% by weight of copper oxide and in which the same oxidic support material is present in the active composition and as binder, and the use of the catalyst for the hydrogenation of carbonyl compounds.
    Type: Application
    Filed: November 2, 2007
    Publication date: March 13, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Stephan SCHLITTER, Olga SCHUBERT, Michael HESSE, Sabine BORCHERS, Markus ROSCH, Rolf PINKOS, Alexander WECK, Gunther WINDECKER
  • Publication number: 20080004475
    Abstract: A process is provided for the preparation of polymethylol compounds of formula (I): (HOCH2)2—C—(R)2 , ??(I) in which the radicals R independently of one another are each a further methylol group, an alkyl group having from 1 to 22 C atoms or an aryl or aralkyl group having from 6 to 22 C atoms, by (a) condensing aldehydes having from 2 to 24 C atoms with formaldehyde in an aldol reaction using tertiary amines as a catalyst to give alkanals of formula (II): in which the radicals R independently of one another are each as defined above, (b) then separating, by distillation, the reaction mixture obtained into a bottom product comprising predominantly the compounds of formula II and a low-boiling stream consisting of unconverted or partially converted starting materials, and (c) hydrogenating the distillation bottom, wherein the aldol reaction is carried out with an aqueous formaldehyde solution having a methanol content of 0.35 to 0.
    Type: Application
    Filed: June 28, 2006
    Publication date: January 3, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Tilman Sirch, Michael Steiniger, Steffen Mass, Stefan Rittinger, Stephan Schlitter, Ludwig E. Heck, Todd C. Spengeman, Jeffrey T. Andress
  • Patent number: 7307040
    Abstract: A catalyst for the hydrogenation of C4-dicarboxylic acids and/or derivatives thereof, preferably maleic anhydride, in the gas phase comprises a) 20-94% by weight of copper oxide (CuO), preferably 40-92% by weight of CuO, in particular 60-90% by weight of CuO, and b) 0.005-5% by weight, preferably 0.01-3% by weight, in particular 0.05-2% by weight, palladium and/or a palladium compound (calculated as metallic palladium) and c) 2-79.995% by weight, preferably 5-59.99% by weight, in particular 8-39.95% by weight, of an oxidic support selected from the group consisting of the oxides of Al, Si, Zn, La, Ce, the elements of groups IIIA to VIIIA and of groups IA and IIA of the Periodic Table of the Elements.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: December 11, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Schlitter, Holger Borchert, Michael Hesse, Markus Schubert, Nils Bottke, Rolf-Hartmuth Fischer, Markus Rösch, Gunnar Heydrich, Alexander Weck
  • Publication number: 20070282135
    Abstract: Process for the catalytic hydrogenation of methylolalkanals of the general formula where R1 and R2 are each, independently of one another, a further methylol group or an alkyl group having from 1 to 22 carbon atoms or an aryl or aralkyl group having from 6 to 33 carbon atoms, in the liquid phase by means of hydrogen over a hydrogenation catalyst, wherein hydrogen is used in a molar ratio to methylolalkanal of greater than 1.
    Type: Application
    Filed: June 6, 2006
    Publication date: December 6, 2007
    Applicant: BASF Aktiengesellschaft
    Inventors: Steffen Maas, Thorsten Johann, Michael Koch, Tilman Sirch, Stephan Schlitter, Stefan Rittinger, Michael Steiniger, Todd C. Spengeman
  • Patent number: 7276573
    Abstract: The present invention provides a process for preparing mono- or diesters of polytetrahydrofuran or of tetrahydrofuran copolymers by polymerizing tetrahydrofuran in the presence of at least one telogen and/or of a comonomer over an acidic catalyst, wherein the polymerization reactor is started up using a mixture of polytetrahydrofuran, the mono- or diesters of polytetrahydrofuran and/or of the THF copolymers, tetrahydrofuran, any comonomer and at least one carboxylic acid and/or one carboxylic anhydride.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: October 2, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Rolf Pinkos, Achim Gerstlauer, Martin Haubner, Stephan Schlitter, Stefan Käshammer, Klaus-Peter Pfaff
  • Patent number: 7271299
    Abstract: Optionally alkyl-substituted 1,4-butanediol is prepared from C4-dicarboxylic acids and/or of derivatives thereof by: a) a gas stream of the C4-dicarboxylic acid or the derivative thereof in a first reactor in the gas phase to obtain a product which contains mainly optionally alkyl-substituted ?-butyro-lactone; b) removing succinic anhydride from the product of step a); c) catalytically hydrogenating the product of step b) in a second reactor in the gas phase to obtain optionally alkyl-substituted 1,4-butanediol; d) removing the desired product from intermediates, by-products and any unconverted reactants; and e) optionally recycling unconverted intermediates into one or both hydrogenation stages. The catalysts employed in each of the hydrogenation stages comprise ?95% by weight of CuO, and ?5% by weight of an oxidic support, and the second reactor has a higher pressure than the first reactor.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: September 18, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Stephan Schlitter, Holger Borchert, Markus Schubert, Markus Rösch, Nils Bottke, Rolf-Hartmuth Fischer, Alexander Weck, Gunther Windecker, Gunnar Heydrich
  • Publication number: 20070135650
    Abstract: The present invention provides a process for variably preparing mixtures of optionally alkyl-substituted BDO, GBL and THF by two-stage hydrogenation in the gas phase of C4 dicarboxylic acids and/or derivatives thereof, which comprises a) in a first step in the gas phase, hydrogenating a gas stream of C4 dicarboxylic acids and/or derivatives thereof over a catalyst at a pressure of from 2 to 100 bar and a temperature of from 200° C. to 300° C.
    Type: Application
    Filed: December 4, 2004
    Publication date: June 14, 2007
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Markus Rosch, Rolf Pinkos, Michael Hesse, Stephan Schlitter, Henrik Junicke, Olga Schubert, Alexander Weck, Gunther Windecker
  • Publication number: 20070117719
    Abstract: The invention relates to a catalyst provided in the form of an extrudate, which contains 5 to 85% by weight of copper oxide and comprises, in the active material and as binders, the same oxidic carrier material. The invention also relates to the use of the catalyst for hydrogenating carbonyl compounds.
    Type: Application
    Filed: December 4, 2004
    Publication date: May 24, 2007
    Inventors: Stephan Schlitter, Olga Schubert, Michael Hesse, Sabine Borchers, Markus Rosch, Rolf Pinkos, Alexander Weck, Gunther Windecker
  • Patent number: 7217679
    Abstract: A catalyst for the hydrogenation of C4-dicarboxylic acids and/or their derivatives, preferably maleic anhydride, in the gas phase comprises from 5 to 100% by weight, preferably from 40 to 90% by weight, of copper oxide and from 0 to 95% by weight, preferably from 10 to 60% by weight, of one or more metals or compounds thereof selected from the group consisting of Al, Si, Zn, Pd, La, Ce, the elements of groups III A to VIII A and groups I A and II A as active composition applied in the form of a thin layer to an inert support material.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: May 15, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Holger Borchert, Stephan Schlitter, Rolf-Hartmuth Fischer, Markus Rösch, Frank Stein, Ralf-Thomas Rahn, Alexander Weck
  • Patent number: 7193091
    Abstract: A process for coproducing alkyl-substituted or unsubstituted THF and pyrrolidones by catalytically hydrogenating C4-dicarboxylic acids and/or derivatives thereof in the gas phase in the presence of copper catalysts and reacting GBL with ammonia or primary amines to give pyrrolidones.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: March 20, 2007
    Assignee: Basf Aktiengesellschaft
    Inventors: Rolf-Hartmuth Fischer, Markus Rösch, Nils Bottke, Alexander Weck, Gunther Windecker, Michael Hesse, Holger Borchert, Stephan Schlitter
  • Publication number: 20070036697
    Abstract: A multi-zone jacketed pipe reactor (2; 60; 90; 130) for carrying out exothermic gaseous phase reactions and with at least one reaction zone (I) working with vaporisation cooling, at least one reaction zone (II) working with circulation cooling and, possibly, with additional zones (III, IV) is characterised in that one reaction zone (I) working with vaporisation cooling forms the first reaction zone to which is connected an additional reaction zone (II) working with circulation cooling. In this way there occurs at the beginning of the reaction, when the latter is most violent, very intensive cooling at a precisely controllable temperature and especially as well a temperature that is constant across the entire cross-section of the reactor while subsequently in a subsequent reaction zone working with circulating cooling by means of global counter-flow guidance of the heat transfer agent a constant cooling of the reaction gas is achieved.
    Type: Application
    Filed: December 31, 2003
    Publication date: February 15, 2007
    Inventors: Friedrich Gutlhuber, Manfred Lehr, Gunnar Heydrich, Gunther Windecker, Stephan Schlitter, Michael Hesse, Markus Rosch, Alexander Weck, Rolf Fischer
  • Patent number: 7169958
    Abstract: The present invention relates to a process for preparing optionally alkyl-substituted 1,4-butanediol by two-stage catalytic hydrogenation in the gas phase of C4-dicarboxylic acids and/or of derivatives thereof having the following steps: a) introducing a gas stream of a C4-dicarboxylic acid or of a derivative thereof at from 200 to 300° C. and from 2 to 60 bar into a first reactor and catalytically hydrogenating it to a product which contains mainly optionally alkyl-substituted ?-butyrolactone; b) converting the product stream into the liquid phase; c) introducing the product stream obtained in this way into a second reactor at a temperature of from 100° C. to 240° C.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: January 30, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Stephan Schlitter, Holger Borchert, Markus Schubert, Markus Rösch, Nils Bottke, Rolf-Hartmuth Fischer, Alexander Weck, Gunther Windecker, Gunnar Heydrich
  • Patent number: 7154011
    Abstract: The present invention relates to a process for preparing optionally alkyl-substituted 1,4-butanediol by two-stage catalytic hydrogenation in the gas phase of C4-dicarboxylic acids and/or of derivatives thereof having the following steps: a) introducing a gas stream of a C4-dicarboxylic acid or of a derivative thereof at from 200 to 300° C. and from 10 to 100 bar into a first reactor or into a first reaction zone of a reactor and catalytically hydrogenating it in the gas phase to a product which contains mainly optionally alkyl-substituted ?-butyrolactone; b) introducing the product stream obtained in this way into a second reactor or into a second reaction zone of a reactor at a temperature of from 140° C. to 260° C.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: December 26, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Stephan Schlitter, Holger Borchert, Markus Schubert, Markus Rösch, Nils Bottke, Rolf-Hartmuth Fischer, Alexander Weck, Gunther Windecker, Gunnar Heydrich