Patents by Inventor Stephan W. Gilges

Stephan W. Gilges has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10897831
    Abstract: Methods, systems, and apparatuses are described that enable the recovery of stranded power in a data center. For example, a power distribution system for recovering stranded power in a data center includes a first power distribution unit (PDU), a first busway segment that is operable to electrically connect the first PDU to a first set of server racks in a first row of server racks, a second busway segment that is operable to electrically connect the first PDU to a second set of server racks in a second row of server racks, a second PDU, a third busway segment that is operable to electrically connect the second PDU to a third set of server racks in a third row of server racks, and a fourth busway segment that is operable to electrically connect the second PDU to a fourth set of server racks in the second row of server racks.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: January 19, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Stephan W. Gilges, Keith A. Krueger, Robert G. Allison, Jayanthi Lakshmanan, Glen Robert Beyer, Yidian Sun, Scott T. Seaton, Daniel David Woodman
  • Publication number: 20190364687
    Abstract: Methods, systems, and apparatuses are described that enable the recovery of stranded power in a data center. For example, a power distribution system for recovering stranded power in a data center includes a first power distribution unit (PDU), a first busway segment that is operable to electrically connect the first PDU to a first set of server racks in a first row of server racks, a second busway segment that is operable to electrically connect the first PDU to a second set of server racks in a second row of server racks, a second PDU, a third busway segment that is operable to electrically connect the second PDU to a third set of server racks in a third row of server racks, and a fourth busway segment that is operable to electrically connect the second PDU to a fourth set of server racks in the second row of server racks.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 28, 2019
    Inventors: Stephan W. Gilges, Keith A. Krueger, Robert G. Allison, Jayanthi Lakshmanan, Glen Robert Beyer, Yidian Sun, Scott T. Seaton, Daniel David Woodman
  • Patent number: 10191499
    Abstract: Electrical power is provided to power consuming, heat-exhausting devices by multiple gas-fueled electrical power sources located near such devices. Exhaust heat from such devices is utilized as intake cooling air for the gas-fueled power sources, thereby excluding them from cooling capacity requirements. The gas piping delivering gas to gas-fueled power sources is positioned so as to be within hot aisles comprising exhaust heat. The gas piping is located up high for lighter than air gasses and near the floor for heavier than air gasses, with leak detection located nearby. Additionally, gas piping is externally coated with material that visually indicates a leak. By locating gas piping in the hot aisle, exhausted heat increases temperature and, thereby, pressure of the gas, resulting in more efficient gas distribution through the piping and preventing valve freezing. Furthermore, the gas piping is located after potential ignition sources in the airstream.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: January 29, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sean James, Christian L. Belady, Stephan W. Gilges, Sriram Sankar, John Siegler, Brian Andersen, Eric C Peterson, J Darrin Schroeder
  • Patent number: 9894810
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: February 13, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Publication number: 20160338229
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Application
    Filed: March 1, 2016
    Publication date: November 17, 2016
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Publication number: 20160004263
    Abstract: Electrical power is provided to power consuming, heat-exhausting devices by multiple gas-fueled electrical power sources located near such devices. Exhaust heat from such devices is utilized as intake cooling air for the gas-fueled power sources, thereby excluding them from cooling capacity requirements. The gas piping delivering gas to gas-fueled power sources is positioned so as to be within hot aisles comprising exhaust heat. The gas piping is located up high for lighter than air gasses and near the floor for heavier than air gasses, with leak detection located nearby. Additionally, gas piping is externally coated with material that visually indicates a leak. By locating gas piping in the hot aisle, exhausted heat increases temperature and, thereby, pressure of the gas, resulting in more efficient gas distribution through the piping and preventing valve freezing. Furthermore, the gas piping is located after potential ignition sources in the airstream.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 7, 2016
    Inventors: Sean James, Christian L. Belady, Stephan W. Gilges, Sriram Sankar, John Siegler, Brian Andersen, Eric C. Peterson, J Darrin Schroeder
  • Publication number: 20130163185
    Abstract: A data center may be built from docking stations, and from removable and replaceable IT cartridges. In one example, a docking station is built that provides cooling capability, and other support capability, for IT equipment. An IT cartridge is coupled to the docking station, thereby allowing the IT equipment in the cartridge to receive cooling and other support from the docking station, without the cartridge having any cooling infrastructure (or without having a substantial cooling infrastructure). Since IT equipment may have a shorter useful life than cooling equipment (or other non-IT equipment), when the IT equipment has reached the end of its useful life, the IT cartridge can be retired, and replaced with a new IT cartridge, thereby allowing the longer-lived equipment in the docking station to be easily reused with new IT equipment.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: MICROSOFT CORPORATION
    Inventors: Stephan W. Gilges, Christian L. Belady, David Thomas Gauthier, Mark E. Shaw, Steven Solomon
  • Publication number: 20120055012
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 8, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Patent number: 8077457
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Microsoft Corporation
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Publication number: 20100223085
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Applicant: Microsoft Corporation
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren