Patents by Inventor Stephane Costeux

Stephane Costeux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170120486
    Abstract: Prepare nanofoam by: (a) providing a mold (10) with a mold cavity (12) defined by mold walls defining a sealable port (32); (b) providing a foamable polymer mixture containing a polymer and a blowing agent at a pressure at least 690 kilopascals above the saturation pressure for the polymer and blowing agent; (c) introducing the foamable polymer mixture into the mold cavity (12) while maintaining a temperature and pressure at least 690 kilopascals above the saturation pressure and controlling the pressure in the mold cavity (12) by expanding a wall of the mold; and (d) releasing pressure around the foamable mixture by moving a mold wall (20) at a rate of at least 45 centimeters per second, causing the foamable polymer mixture to expand into nanofoam having a porosity of at least 60 percent, a volume of at least 100 cubic centimeters and at least two orthogonal dimensions of four centimeter or more.
    Type: Application
    Filed: May 20, 2015
    Publication date: May 4, 2017
    Inventors: Stéphane Costeux, Daniel A. Beaudoin, Hyunwoo Kim, Devin A. Foether
  • Patent number: 9546256
    Abstract: A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 17, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Bruce A. King, Kshitish A. Patankar, Stéphane Costeux, Hyun K. Jeon
  • Publication number: 20170002162
    Abstract: Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
    Type: Application
    Filed: March 18, 2015
    Publication date: January 5, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Liang Chen, Anne M. Kelly-Rowley, Shana P. Bunker, Stéphane Costeux
  • Publication number: 20160333160
    Abstract: A rigid polyurethane (PU) foam having a number average cell size of no greater than 10
    Type: Application
    Filed: January 23, 2014
    Publication date: November 17, 2016
    Applicants: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Luigi Bertucelli, Vanni Parenti, Dachao Li, Wei Liu, Ning Chai, Beilei Wang, Cheng Chen, Hong Fei Guo, Jing Chen, Yige Yin, Stephane Costeux, Billy G. Smith
  • Patent number: 9492963
    Abstract: This invention relates to coupling of polyethylene resins, more specifically coupling of polyethylene resins for use in extruded profiles, especially extruded profiles for sheet extrusion and cut sheet thermoforming applications and geomembranes. The process involves conveying a HDPE resin through an extruder, wherein the extruder comprises a feed zone, a first melt zone downstream of the feed zone, a second melt zone downstream of the first melt zone, and a third melt zone downstream of the second melt zone. The resin is melted in the first zone, contacted with oxygen in the second melt zone, and contacted antioxidant in the third melt zone.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: November 15, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: William J. Michie, Jr., Todd A. Hogan, Felipe Martinez Barreneche, Anthony C. Neubauer, Stephane Costeux
  • Publication number: 20160304692
    Abstract: Polymer foam bodies are made from phosphorus-containing thermoplastic random copolymers of a dialkyl (meth)acryloyloxyalkyl phosph(on)ate. Foam bodies made from these copolymers exhibit increased limiting oxygen indices and surprisingly have good properties. In certain embodiments, the phosphorus-containing thermoplastic copolymer is blended with one or more other polymers and formed into nanofoams.
    Type: Application
    Filed: December 27, 2013
    Publication date: October 20, 2016
    Inventors: Yudong Qi, Yan Li, Shana P. Bunker, Stephane Costeux, Ted A. Morgan
  • Publication number: 20160237233
    Abstract: Prepare a polymer foam by expanding a foamable polymer composition of a copolymer component and a blowing agent where the copolymer component accounts for more than 50 weight-percent of the total polymer weight in the foamable polymer composition and is one or more than one styrene-carboxylic acid copolymer having an acid number of 20 or higher while the blowing agent comprises a fluorinated blowing agent, less than 70 weight-percent of which is 1,1,2,2-tetrafluoroethane and less than five weight-percent is carbon dioxide and C3-C5 hydrocarbons make up less than 30 mole-percent of the blowing agent; expand the foamable polymer composition into a polymer foam having an average cell size of less than 0.5 millimeters where the copolymer composition is a continuous phase in the polymer foam.
    Type: Application
    Filed: October 29, 2014
    Publication date: August 18, 2016
    Applicants: Dow Global Technologies LLC, Dow Global Technologies LLC
    Inventors: Lawrence S. Hood, Stéphane Costeux, Scott T. Matteucci
  • Publication number: 20160229970
    Abstract: Extruded polymer foams are made from a polymer composition that includes an unbrominated styrenic polymer, a brominated vinyl aromatic/butadiene flame retardant, and an unbrominated vinyl aromatic/butadiene polymer. The unbrominated vinyl aromatic/butadiene polymer improves the cell homogeneity.
    Type: Application
    Filed: October 30, 2013
    Publication date: August 11, 2016
    Inventors: Kenji Matsue, Naganori Nishioka, Yoshihiro Shirakawa, Lawrence S. Hood, Shari L. Kram, Stephane Costeux, Mark A. Barger
  • Patent number: 9187611
    Abstract: A polymeric foam has a thermoplastic polymer matrix defining multiple cells, the foam characterized by: (a) the polymer matrix having greater than 50 weight-percent copolymer containing at least two different monomers at least one of which is a methacrylate monomer, each monomer having a solubility parameter lower than 20 (megaPascals)0.5 and a chemical composition where twice the mass fraction of oxygen plus the mass fraction of nitrogen, fluorine and silicon is greater than 0.2; wherein the monomers comprise at least 90 weight-percent of all monomers in the copolymer; (b) at least one of the following: (i) a nucleation site density of at least 3×1014 effective nucleation sites per cubic centimeter of foamable polymer composition; (ii) an average cell size of 300 nanometer or less; (c) a porosity percentage greater than 30%; (d) an absence of nano-sized nucleating additive; and (e) a thickness of at least one millimeter.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 17, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Stephane Costeux, Lingbo Zhu, Hyun Jeon, Shana P. Bunker, Thomas H. Kalantar
  • Publication number: 20150284527
    Abstract: A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.
    Type: Application
    Filed: November 11, 2013
    Publication date: October 8, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Bruce A. King, Kshitish A. Patankar, Stéphane Costeux, Hyun K. Jeon
  • Patent number: 9145477
    Abstract: Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1×1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 29, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Lingbo Zhu, Stéphane Costeux, Kshitish A. Patankar, Jonathan D. Moore
  • Patent number: 9145478
    Abstract: Prepare a polymeric nanofoam using a continuous extrusion process by providing a polymer melt of a polymer composition in an extruder, introducing carbon dioxide to a concentration above the solubility in the polymer melt, cooling the polymer melt without increasing the pressure to achieve conditions where all of the carbon dioxide is soluble in the polymer composition and then extruding the polymer composition and carbon dioxide mixture through an extrusion die so as to experience a pressure drop of at least five MegaPascals at a rate of at least ten MegaPascals per second and allowing the polymer composition to expand into a polymeric nanofoam.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 29, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Stéphane Costeux, Dennis R. Lantz, Daniel A. Beaudoin, Mark A. Barger
  • Publication number: 20150203647
    Abstract: Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1×1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.
    Type: Application
    Filed: September 13, 2013
    Publication date: July 23, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Lingbo Zhu, Stéphane Costeux, Kshitish A. Patankar, Jonathan D. Moore
  • Patent number: 8920891
    Abstract: A polymer composition comprises a low-molecular-weight (LMW) ethylene polymer component and a high-molecular-weight (HMW) ethylene polymer component coupled with a polysulfonyl azide. Preferably, the LMW polyethylene component and the HMW polyethylene component co-crystallize in the composition such that it exhibits a single or substantially single peak in a lamella thickness distribution (LTD) curve. The ethylene polymer for the LMW and the HMW polyethylene components can be either homopolymer or ethylene copolymer. Preferably, both components are an ethylene copolymer of the same, or different, composition (that is, with the same or different comonomers). A method of making a pipe that includes selecting a polymer composition having a substantially single peak in the LTD curve is described. Compositions comprising a chromium-catalyzed ethylene polymer, coupled with a polysulfonyl azide are also described herein.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: December 30, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: William J. Michie, Jr., Dane Chang, Anthony C. Neubauer, Mridula Kapur, Todd A. Hogan, Felipe B. Martinez, Stephane Costeux
  • Publication number: 20140221512
    Abstract: Prepare a polymeric nanofoam using a continuous extrusion process by providing a polymer melt of a polymer composition in an extruder, introducing carbon dioxide to a concentration above the solubility in the polymer melt, cooling the polymer melt without increasing the pressure to achieve conditions where all of the carbon dioxide is soluble in the polymer composition and then extruding the polymer composition and carbon dioxide mixture through an extrusion die so as to experience a pressure drop of at least five MegaPascals at a rate of at least ten MegaPascals per second and allowing the polymer composition to expand into a polymeric nanofoam.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 7, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Stéphane Costeux, Dennis R. Lantz, Daniel A. Beaudoin, Mark A. Barger
  • Publication number: 20140200283
    Abstract: A polymeric nanofoam has a continuous polymer phase containing at least one (meth)acrylic-free acrylonitrile-containing copolymer and at least one (meth)acrylic polymer where the concentration of (meth)acrylic polymer is in a range of 5-90 weight-percent of the total continuous polymer phase while the amount of methacrylic copolymer is 50 weight-percent or less of the total continuous polymer phase; the polymeric foam having a porosity of at least 50%, an absence of nano-sized nucleating additives and at least one of the following: (a) a number average cell size of 500 nanometers or less; and (b) an effective nucleation site density of at least 1×1014 sites per cubic centimeter of prefoamed material. The total weight of copolymerized acrylonitrile is in a range of 3-28 weight-percent based on total continuous polymer phase weight. At least one (meth)acrylic-free acrylonitrile-containing copolymer has a higher glass transition temperature than all of the (meth)acrylic polymers.
    Type: Application
    Filed: September 14, 2012
    Publication date: July 17, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Stéphane Costeux, Shana P. Bunker, Hyun K. Jeon, Prasanna K. Jog
  • Publication number: 20130224464
    Abstract: Prepare an article of manufacture by providing a latex of hollow latex particles with a rigid inner shell and adhesive outer shell, providing nanoporous particles and dispersing them into the latex and drying the latex so as to cause the hollow latex particle to bind to one another and form an article of manufacture containing nanoporous particles and hollow latex particles wherein the hollow latex particles are bound directly to one another to form a continuous matrix and the nanoporous particles are dispersed within the continuous matrix of hollow latex particles.
    Type: Application
    Filed: November 15, 2010
    Publication date: August 29, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Yahong Zhang, Stéphane Costeux, Thomas H. Kalantar
  • Publication number: 20130091682
    Abstract: An article contains inorganic nanoporous particles bound together by water dispersible polyurethane, the article having 75 volume-percent or more inorganic nanoporous particles based on total article volume and having a density of 0.14 grams per cubic centimeter or less and a thermal conductivity of 25 milliWatts per meter*Kelvin or less and having a thickness of at least 0.5 centimeters. A process for preparing such an article includes dispersing inorganic nanoporous particles into an aqueous dispersion of dispersible polyurethane to form a dispersion, casting the dispersion into a mold, and drying to form an article. A method for using such an article includes placing the article in a structure between two areas that can differ in temperature.
    Type: Application
    Filed: June 30, 2010
    Publication date: April 18, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Yahong Zhang, Yanli Huo, Stéphane Costeux, Thomas H. Kalantar
  • Publication number: 20120321873
    Abstract: A polymeric foam has a thermoplastic polymer matrix defining multiple cells, the foam characterized by: (a) the polymer matrix having greater than 50 weight-percent copolymer containing at least two different monomers at least one of which is a methacrylate monomer, each monomer having a solubility parameter lower than 20 (megaPascals)0.5 and a chemical composition where twice the mass fraction of oxygen plus the mass fraction of nitrogen, fluorine and silicon is greater than 0.2; wherein the monomers comprise at least 90 weight-percent of all monomers in the copolymer; (b) at least one of the following: (i) a nucleation site density of at least 3×1014 effective nucleation sites per cubic centimeter of foamable polymer composition; (ii) an average cell size of 300 nanometer or less; (c) a porosity percentage greater than 30%; (d) an absence of nano-sized nucleating additive; and (e) a thickness of at least one millimeter.
    Type: Application
    Filed: February 23, 2011
    Publication date: December 20, 2012
    Inventors: Stephane Costeux, Lingbo Zhu, Hyun Jeon, Shana P. Bunker, Thomas H. Kalantar
  • Patent number: 8324287
    Abstract: Prepare a polymeric foam from a foamable polymer composition containing a thermoplastic polymer composition and a blowing agent wherein 75 percent or more by weight of all non-halogenated polymers in the foamable polymer composition is a styrene-acrylonitrile copolymer composition having a polymerized acrylonitrile content distribution with a positive skew in a copolymerized AN content distribution and a positive percent difference between the mean and the median copolymerized AN content distribution.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Lawrence S. Hood, Stephane Costeux, William A. Heeschen