Patents by Inventor Stephanie Roche

Stephanie Roche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8766280
    Abstract: This substrate (11) for a device (50) that collects or emits radiation comprises a transparent polymer layer (1) and a barrier layer (2) on at least one face (1A) of the polymer layer. The barrier layer (2) consists of an antireflection multilayer of at least two thin transparent layers (21, 22, 23, 24) having both alternately lower and higher refractive indices and alternately lower and higher densities, wherein each thin layer (21, 22, 23, 24) of the constituent multilayer of the barrier layer (2) is an oxide, nitride or oxynitride layer.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 1, 2014
    Assignee: Saint-Gobain Performance Plastics Corporation
    Inventors: Claire Thoumazet, Emmanuel Valentin, Stephanie Roche
  • Publication number: 20120228641
    Abstract: This substrate (11) for a device (50) that collects or emits radiation comprises a transparent polymer layer (1) and a barrier layer (2) on at least one face (1A) of the polymer layer. The barrier layer (2) consists of an antireflection multilayer of at least two thin transparent layers (21, 22, 23, 24) having both alternately lower and higher refractive indices and alternately lower and higher densities, wherein each thin layer (21, 22, 23, 24) of the constituent multilayer of the barrier layer (2) is an oxide, nitride or oxynitride layer.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 13, 2012
    Applicant: Saint-Gobain Performance Plastics Corporation
    Inventors: Claire Thoumazet, Emmanuel Valentin, Stephanie Roche
  • Publication number: 20110100424
    Abstract: The subject of the invention is a transparent substrate (6), especially glass substrate, comprising an antireflection coating on at least one of its faces, which is made of a multilayer (A) of thin layers having alternately high and low refractive indices. The multilayer is characterized in that the high-index first layer (1) and/or the high-index third layer (3) are based on a zinc tin mixed oxide, with a ratio, expressed in atomic percent, of the tin to the zinc that is greater than 1.
    Type: Application
    Filed: March 10, 2009
    Publication date: May 5, 2011
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Stephanie Roche, Erwan Mahe, Laurent Labrousse
  • Patent number: 7695531
    Abstract: During the production of a lithium microbattery, the electrolyte containing a lithiated compound is formed by successively depositing an electrolytic thin film, a first protective thin film that is chemically inert in relation to the lithium, and a first masking thin film on a substrate provided with current collectors and a cathode. A photolithography step is carried out on the first masking thin film in order to create a mask for selectively etching the first masking thin layer, and the first protective thin layer and the electrolytic thin film are then selectively etched in such a way as to form the electrolyte in the electrolytic thin film. This technique enables the electrolyte to be formed by photolithography and etching without causing any damage thereto.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: April 13, 2010
    Assignee: Commissariat A'Lenergie Atomique
    Inventors: Frederic Gaillard, Marc Plissonnier, Raphael Salot, Stephanie Roche
  • Publication number: 20090011194
    Abstract: Method for the treatment of at least one surface portion of at least one layer A located between a substrate and a layer B of a thin-film multilayer, the layers of which are vacuum-deposited on the substrate having a glass function, according to the invention, is characterized in that: at least one thin layer A is deposited on a surface portion of said substrate, this deposition phase being carried out by a vacuum deposition process; using at least one linear ion source, a plasma of ionized species is generated from a gas or from a gas mixture; at least one surface portion of the layer A is subjected to said plasma so that said ionized species at least partly modifies the surface state of the layer A; and at least one layer B is deposited on a surface portion of the layer A, this deposition phase being carried out by a vacuum deposition process.
    Type: Application
    Filed: October 23, 2006
    Publication date: January 8, 2009
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Nicolas Nadaud, Stephanie Roche, Uwe Schmidt, Marcus Loergen
  • Publication number: 20070067984
    Abstract: During the production of a lithium microbattery, the electrolyte containing a lithiated compound is formed by successively depositing an electrolytic thin film, a first protective thin film that is chemically inert in relation to the lithium, and a first masking thin film on a substrate provided with current collectors and a cathode. A photolithography step is carried out on the first masking thin film in order to create a mask for selectively etching the first masking thin layer, and the first protective thin layer and the electrolytic thin film are then selectively etched in such a way as to form the electrolyte in the electrolytic thin film. This technique enables the electrolyte to be formed by photolithography and etching without causing any damage thereto.
    Type: Application
    Filed: November 4, 2004
    Publication date: March 29, 2007
    Inventors: Frederic Gaillard, Marc Plissonnier, Raphael Salot, Stephanie Roche
  • Publication number: 20070048604
    Abstract: A lithium microbattery comprises a substrate on which at least one stack is arranged successively comprising a cathode, an electrolyte containing lithium and an anode consisting of metallic lithium. A protective envelope comprising at least first and second distinct superposed layers covers the stack to protect the same against external contamination. The first layer, deposited on the whole of the anode, comprises at least one material that is chemically inert with regard to lithium, selected from the group consisting of a hydrogenated amorphous silicon carbide, a hydrogenated amorphous silicon oxycarbide, hydrogenated amorphous carbon, fluorinated amorphous carbon and hydrogenated amorphous silicon. The second layer comprises a material selected from the group consisting of a hydrogenated amorphous silicon carbonitride, a hydrogenated amorphous silicon nitride and a fluorinated amorphous carbon.
    Type: Application
    Filed: November 4, 2004
    Publication date: March 1, 2007
    Applicant: Commissariat a L'Energie Atomique
    Inventors: Frederic Gaillard, Marc Plissonnier, Raphael Salot, Stephanie Roche
  • Publication number: 20070037059
    Abstract: A microbattery comprises, in the form of thin layers, at least first and second electrodes between which a solid electrolyte is disposed. The first electrode and the electrolyte both comprise at least one common grouping of [XY1Y2Y3Y4] type, where X is located in a tetrahedron whose peaks are respectively formed by the chemical elements Y1, Y2, Y3 and Y4, the chemical element X being selected from the group consisting of phosphorus, boron, silicon, sulphur, molybdenum, vanadium and germanium and the chemical elements Y1, Y2, Y3 and Y4 being selected from the group consisting of sulphur, oxygen, fluorine and chlorine.
    Type: Application
    Filed: October 11, 2004
    Publication date: February 15, 2007
    Applicant: Commissariat a l'Energie Atomique
    Inventors: Raphael Salot, Frederic Le Cras, Stephanie Roche