Patents by Inventor Stephen A. Morin

Stephen A. Morin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150357078
    Abstract: An elastically-deformable, conductive composite using elastomers and conductive fibers and simple fabrication procedures is provided. Conductive elastomeric composites offer low resistance to electrical current and are elastic over large (>25%) extensional strains. They can be easily interfaced/built into structures fabricated from elastomeric polymers.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Joshua Aaron LESSING, Stephen A. MORIN, George M. WHITESIDES
  • Publication number: 20150283699
    Abstract: Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
    Type: Application
    Filed: September 8, 2014
    Publication date: October 8, 2015
    Inventors: Stephen A. MORIN, Robert F. SHEPHERD, Adam STOKES, Filip ILIEVSKI, Ramses V. MARTINEZ, Jamie L. BRANCH, Carina R. FISH, Lihua JIN, Rui M.D. NUNES, Zhigang SUO, George M. WHITESIDES
  • Publication number: 20150217459
    Abstract: Apparatus, systems, and methods for providing modular soft robots are disclosed. In particular, the disclosed modular soft robot can include a flexible actuator having a plurality of molded flexible units. Each molded flexible unit can include a mechanical connector configured to provide a physical coupling to another molded flexible unit, and the plurality of molded flexible units are arranged to form an embedded fluidic channel. The modular soft robot can also include an inlet coupled to the embedded fluidic channel, where the inlet is configured to receive pressurized or depressurized fluid to inflate or deflate a portion of the flexible actuator, thereby causing an actuation of the flexible actuator.
    Type: Application
    Filed: July 18, 2013
    Publication date: August 6, 2015
    Inventors: Stephen A. Morin, Sen Wai Kwok, Robert F. Shepherd, George M. Whitesides
  • Publication number: 20140318118
    Abstract: Some embodiments of the disclosed subject matter includes a laminated robotic actuator. The laminated robotic actuator includes a strain-limiting layer comprising a flexible, non-extensible material in the form of a sheet or thin film, a flexible inflatable layer in the form of a thin film or sheet in facing relationship with the strain-limiting layer, wherein the inflatable layer is selectively adhered to the strain-limiting layer, and wherein a portion of an un-adhered region between the strain-limiting layer and the inflatable layer defines a pressurizable channel, and at least one fluid inlet in fluid communication with the pressurizable channel. The first flexible non-extensible material has a stiffness that is greater than the stiffness of the second flexible elastomeric material and the flexible elastomer is non-extensible under actuation conditions.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Aaron D. MAZZEO, Stephen A. MORIN, Robert F. SHEPHERD, George M. WHITESIDES, William B. KALB
  • Publication number: 20140208731
    Abstract: Systems and methods for providing a soft robot is provided. In one system, a robotic device includes a flexible body having a fluid chamber, where a portion of the flexible body includes an elastically extensible material and a portion of the flexible body is strain limiting relative to the elastically extensible material. The robotic device can further include a pressurizing inlet in fluid communication with the fluid chamber, and a pressurizing device in fluid communication with the pressurizing inlet, the pressurizing device including a reaction chamber configured to accommodate a gas-producing chemical reaction for providing pressurized gas to the pressurizing inlet.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Robert F. SHEPHERD, Adam STOKES, Stephen A. MORIN, Ludovico CADEMARTIRI, Jacob FREAKE, Rui NUNES, Xin CHEN, George M. WHITESIDES
  • Publication number: 20140109560
    Abstract: A soft robotic device includes a flexible body having a width, a length and a thickness, wherein the thickness is at least 1 mm, the flexible body having at least one channel disposed within the flexible body, the channel defined by upper, lower and side walls, wherein at least one wall is strain limiting; and a pressurizing inlet in fluid communication with the at least one channel, the at least one channel positioned and arranged such that the wall opposite the strain limiting wall preferentially expands when the soft robotic device is pressurized through the inlet.
    Type: Application
    Filed: November 21, 2011
    Publication date: April 24, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Filip Ilievski, Xin Chen, Aaron D. Mazzeo, George M. Whitesides, Robert F. Shepherd, Ramses V. Martinez, Won Jae Choi, Sen W. Kwok, Stephen A. Morin, Adam Stokes, Zhihong Nie