Patents by Inventor Stephen C. Baer

Stephen C. Baer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11377758
    Abstract: A method of creating thin wafers of single crystal silicon, sapphire and similar materials, wherein an ingot of single crystalline material, or a ribbon of single crystalline material is cleaved, in a plane parallel to a surface, with laser light focused to a line in the desired plane of cleavage, near the growing cleavage furrow. The light is of a wavelength that the material is transparent to, but for which the material has strong two- or three-photon absorption. Consequently the light is not appreciably absorbed until it reached the desired focal line. The light is presented in an extremely short pulse, which heats and expands the material at the line focus, before the heat can be dissipated. This expansion creates tangential stresses around the focal line. These stresses are designed to be precisely normal to the growing cleavage furrow.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: July 5, 2022
    Inventor: Stephen C. Baer
  • Publication number: 20220162771
    Abstract: A method of creating thin wafers of single crystal silicon, sapphire and similar materials, wherein an ingot of single crystalline material, or a ribbon of single crystalline material is cleaved, in a plane parallel to a surface, with laser light focused to a line in the desired plane of cleavage, near the growing cleavage furrow. The light is of a wavelength that the material is transparent to, but for which the material has strong two- or three-photon absorption. Consequently the light is not appreciably absorbed until it reached the desired focal line. The light is presented in an extremely short pulse, which heats and expands the material at the line focus, before the heat can be dissipated. This expansion creates tangential stresses around the focal line. These stresses are designed to be precisely normal to the growing cleavage furrow.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 26, 2022
    Inventor: Stephen C. Baer
  • Patent number: 10843297
    Abstract: A method of creating thin wafers of single crystal silicon, sapphire and similar materials, wherein an ingot of single crystalline material, or a ribbon of single crystalline material is cleaved, in a plane parallel to a surface, with laser light focused to a line in the desired plane of cleavage, near the growing cleavage furrow. The light is of a wavelength that the material is transparent to, but for which the material has strong two- or three-photon absorption. Consequently the light is not appreciably absorbed until it reached the desired focal line. The light is presented in an extremely short pulse, which heats and expands the material at the line focus, before the heat can be dissipated. This expansion creates tangential stresses around the focal line. These stresses are designed to be precisely normal to the growing cleavage furrow.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: November 24, 2020
    Inventor: Stephen C Baer
  • Publication number: 20190210155
    Abstract: A method of creating thin wafers of single crystal silicon, sapphire and similar materials, wherein an ingot of single crystalline material, or a ribbon of single crystalline material is cleaved, in a plane parallel to a surface, with laser light focused to a line in the desired plane of cleavage, near the growing cleavage furrow. The light is of a wavelength that the material is transparent to, but for which the material has strong two- or three-photon absorption. Consequently the light is not appreciably absorbed until it reached the desired focal line. The light is presented in an extremely short pulse, which heats and expands the material at the line focus, before the heat can be dissipated. This expansion creates tangential stresses around the focal line. These stresses are designed to be precisely normal to the growing cleavage furrow.
    Type: Application
    Filed: September 16, 2014
    Publication date: July 11, 2019
    Inventor: Stephen C. Baer
  • Publication number: 20170138852
    Abstract: In order to produce a beam with a zero intensity axial ray or to produce a beam that when focused will produce an image of a doughnut shaped pattern with a zero intensity central point, a beam with a uniform or Gaussian profile is directed to a plurality of transparent plates, arranged in pairs on opposite sides of the beam axis, such that for at least one pair, the plates have a composition and thickness different from each other, and chosen so that the transmitted light has a has a phase difference of half a wavelength for at least three different wavelengths. An additional plate with a center on the perpendicular of the line connecting the first two plates has a composition and thickness such that the light transmitted through that additional plate has a phase difference of a quarter wavelength with respect to the light transmitted through one of the plates of said first pair of plates, at at least one wavelength.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventor: Stephen C Baer
  • Patent number: 9188784
    Abstract: In order to produce a beam with a zero intensity axial ray or to produce a beam that when focused will produce an image of a doughnut shaped pattern with a zero intensity central point, a beam with a uniform or Gaussian profile is directed to a plurality of transparent plates, arranged in pairs on opposite sides of the beam axis, such that for at least one pair, the plates have a composition and thickness different from each other, and chosen so that the transmitted light has a phase difference of half a wavelength for at least three different wavelengths. An additional plate with a center on the perpendicular of the line connecting the first two plates has a composition and thickness such that the light transmitted through that additional plate has a phase difference of a quarter wavelength with respect to the light transmitted through one of the plates of said first pair of plates, at at least one wavelength.
    Type: Grant
    Filed: March 3, 2013
    Date of Patent: November 17, 2015
    Inventor: Stephen C Baer
  • Patent number: 8835802
    Abstract: A method of creating thin wafers of single crystal silicon wherein an ingot of single-crystal silicon with a (111) axis is flattened and polished at one end normal to the axis, and a notch with a vertex in the (111) plane is produced on a side or edge of the ingot, such that the distance between this vertex and said end is the desired thickness of a wafer to be cleaved from the ingot and such this vertex is in the desired plane of cleavage. Light of a wavelength able to penetrate into the silicon crystal without significant absorption, when the intensity of the beam is low, but is efficiently absorbed and converted to heat when the intensity of the beam is high, is focused to an elongated volume with an axis of elongation in the desired cleavage plane, parallel to and a short distance from said notch edge.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: September 16, 2014
    Inventor: Stephen C. Baer
  • Patent number: 8390928
    Abstract: In order to produce a beam with a zero intensity axial ray or to produce a beam that when focused will produce an image of a doughnut shaped pattern with a zero intensity central point, a beam with a uniform or Gaussian profile is directed to a plurality of transparent plates, arranged in pairs on opposite sides of the beam axis, such that for at least one pair, the plates have a composition and thickness different from each other, and chosen so that the transmitted light has a has a phase difference of half a wavelength for at least three different wavelengths. An additional plate with a center on the perpendicular of the line connecting the first two plates has a composition and thickness such that the light transmitted through that additional plate has a phase difference of a quarter wavelength with respect to the light transmitted through one of the plates of said first pair of plates, at least one wavelength.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: March 5, 2013
    Inventor: Stephen C. Baer
  • Patent number: 8357917
    Abstract: The invention relates to a method for high resolution visualization of a compound that can be switched by a switching signal from a state of low fluorescence to a state of higher fluorescence, and then revert to the state of low fluorescence. Said switching signal is directed to a spot in a region of a material containing said compound, and an optical signal adapted to lower the probability that said switching signal will successfully switch said compound to said state of higher fluorescence is directed to said spot and shaped to have a minimum in said spot, such that the probability that said switching signal successfully switches said compound is greatest at said minimum. Said spot containing both said switching signal and said optical signal is scanned over said region of said material while monitoring the fluorescence from said compound in said spot to create an image of said region. In some embodiments of the invention a plurality of spots are simultaneously scanned, to reduce the imaging time.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: January 22, 2013
    Inventor: Stephen C. Baer
  • Publication number: 20120112095
    Abstract: The invention relates to a method for high resolution visualization of a compound that can be switched by a switching signal from a state of low fluorescence to a state of higher fluorescence, and then revert to the state of low fluorescence. Said switching signal is directed to a spot in a region of a material containing said compound, and an optical signal adapted to lower the probability that said switching signal will successfully switch said compound to said state of higher fluorescence is directed to said spot and shaped to have a minimum in said spot, such that the probability that said switching signal successfully switches said compound is greatest at said minimum. Said spot containing both said switching signal and said optical signal is scanned over said region of said material while monitoring the fluorescence from said compound in said spot to create an image of said region. In some embodiments of the invention a plurality of spots are simultaneously scanned, to reduce the imaging time.
    Type: Application
    Filed: September 11, 2006
    Publication date: May 10, 2012
    Inventor: Stephen C. Baer
  • Patent number: 8053743
    Abstract: In apparatus for superresolution microscopy or microlithography, wherein a spot in the specimen to be examined or in the microlithographic medium is raised to an excited state by a first pulse of light, and a second pulse of light reduces the excitation in the peripheral parts of the spot to increase the resolution of the instrument, a method whereby the wavelength of the second pulse in the specimen or medium is the same as the wavelength of the first pulse, thereby allowing the cost and complexity of the apparatus to be lowered.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: November 8, 2011
    Inventor: Stephen C. Baer
  • Publication number: 20110031411
    Abstract: In apparatus for superresolution microscopy or microlithography, wherein a spot in the specimen to be examined or in the microlithographic medium is raised to an excited state by a first pulse of light, and a second pulse of light reduces the excitation in the peripheral parts of the spot to increase the resolution of the instrument, a method whereby the wavelength of the second pulse in the specimen or medium is the same as the wavelength of the first pulse, thereby allowing the cost and complexity of the apparatus to be lowered.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Inventor: Stephen C. Baer
  • Publication number: 20100315709
    Abstract: In order to produce a beam with a zero intensity axial ray or to produce a beam that when focused will produce an image of a doughnut shaped pattern with a zero intensity central point, a beam with a uniform or Gaussian profile is directed to a plurality of transparent plates, arranged in pairs on opposite sides of the beam axis, such that for at least one pair, the plates have a composition and thickness different from each other, and chosen so that the transmitted light has a has a phase difference of half a wavelength for at least three different wavelengths. An additional plate with a center on the perpendicular of the line connecting the first two plates has a composition and thickness such that the light transmitted through that additional plate has a phase difference of a quarter wavelength with respect to the light transmitted through one of the plates of said first pair of plates, at at least one wavelength.
    Type: Application
    Filed: February 7, 2008
    Publication date: December 16, 2010
    Inventor: Stephen C. Baer
  • Patent number: 7816654
    Abstract: In apparatus for superresolution microscopy or microlithography, wherein a spot in the specimen to be examined or in the microlithographic medium is raised to an excited state by a first pulse of light, and a second pulse of light reduces the excitation in the peripheral parts of the spot to increase the resolution of the instrument, a method whereby the wavelength of the second pulse in the specimen or medium is the same as the wavelength of the first pulse, thereby allowing the cost and complexity of the apparatus to be lowered.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: October 19, 2010
    Inventor: Stephen C. Baer
  • Patent number: 7755063
    Abstract: In scanned optical systems such as confocal laser microscopes wherein a beam of light is focused to a spot in a specimen to excite a fluorescent species or other excitable species in the spot, the effective size of the excitation is made smaller man the size of the spot by providing a beam of light of wavelength adapted to quench the excitation of the excitable species, shaping this second beam into a pattern with a central intensity minimum, and overlapping this central minimum with the central intensity maximum of the focused spot, so that within the spot the intensity of quenching light increases with distance from the center of the spot, thereby preferentially quenching excitation in the peripheral parts of the spot, and thereby reducing the effective size of the excitation and thus improving the resolution of the system.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 13, 2010
    Inventor: Stephen C. Baer
  • Patent number: 7642536
    Abstract: A microscope produces a high magnification stereoscopic image of a specimen by generating in the specimen two needle shaped illuminated regions tilted in optical axis of the microscope using a plurality of pinholes, moveable mirrors, and beamsplitters (37, 70). Light emitted from the needle shaped regions is detected using separate detectors (56, 57). The needle shaped regions are scanned with respect to the specimen using scanner (3). Alternately, a hologram may be used to generate the needle shaped illuminated regions.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: January 5, 2010
    Inventor: Stephen C. Baer
  • Publication number: 20090121153
    Abstract: In apparatus for superresolution microscopy or microlithography, wherein a spot in the specimen to be examined or in the microlithographic medium is raised to an excited state by a first pulse of light, and a second pulse of light reduces the excitation in the peripheral parts of the spot to increase the resolution of the instrument, a method whereby the wavelength of the second pulse in the specimen or medium is the same as the wavelength of the first pulse, thereby allowing the cost and complexity of the apparatus to be lowered.
    Type: Application
    Filed: January 17, 2006
    Publication date: May 14, 2009
    Inventor: Stephen C. Baer
  • Publication number: 20090056513
    Abstract: A method of creating thin wafers of single crystal silicon wherein an ingot of single-crystal silicon with a (111) axis is flattened and polished at one end normal to the axis, and a notch with a vertex in the (111) plane is produced on a side or edge of the ingot, such that the distance between this vertex and said end is the desired thickness of a wafer to be cleaved from the ingot and such this vertex is in the desired plane of cleavage. Light of a wavelength able to penetrate into the silicon crystal without significant absorption, when the intensity of the beam is low, but is efficiently absorbed and converted to heat when the intensity of the beam is high, is focused to an elongated volume with an axis of elongation in the desired cleavage plane, parallel to and a short distance from said notch edge.
    Type: Application
    Filed: January 24, 2007
    Publication date: March 5, 2009
    Inventor: Stephen C. Baer
  • Publication number: 20080258077
    Abstract: In scanned optical systems such as confocal laser microscopes wherein a beam of light is focused to a spot in a specimen to excite a fluorescent species or other excitable specie in the spot, the effective size of the excitation is made smaller man the size of the spot by providing a beam of light of wavelength adapted to quench the excitation of the excitable species, shaping this second beam into a pattern with a central intensity minimum, and overlapping this central minimum with the central intensity maximum of the focused spot, so that within the spot the intensity of quenching light increases with distance from the center of the spot thereby preferentially quenching excitation in the peripheral parts of the spot, and thereby reducing the effective size of the excitation and thus improving the resolution of the system.
    Type: Application
    Filed: June 26, 2008
    Publication date: October 23, 2008
    Inventor: Stephen C. Baer
  • Patent number: 7394077
    Abstract: In scanned optical systems such as confocal laser microscopes wherein a beam of light is focused to a spot in a specimen to excite a fluorescent species or other excitable species in the spot, the effective size of the excitation is made smaller than the size of the spot by providing a beam of light of wavelength adapted to quench the excitation of the excitable species, shaping this second beam into a pattern with a central intensity minimum, and overlapping this central minimum with the central intensity maximum of the focused spot, so that within the spot the intensity of quenching light increases with distance from the center of the spot, thereby preferentially quenching excitation in the peripheral parts of the spot, and thereby reducing the effective size of the excitation and thus improving the resolution of the system.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: July 1, 2008
    Inventor: Stephen C. Baer