Patents by Inventor Stephen C. Terry

Stephen C. Terry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10992177
    Abstract: A device includes a charge controller to regulate a battery output voltage based on an input voltage and an input current received from a charging circuit. A loop controller monitors the input voltage and the input current to generate a feedback signal to adjust the input voltage to the charge controller.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 27, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stephen C. Terry, Paul Brohlin
  • Patent number: 10978921
    Abstract: A wireless power system has a wireless power transmitting device and a wireless power receiving device. During digital ping operations while the transmitting device and receiving device negotiate to establish a power level to use during normal operation, low-power wireless power signals may be transmitted to the receiving device from the wireless power transmitting device. Information gathered during the digital ping may be evaluated using a wireless-power-transmission-efficiency-to-digital-ping-rectifier-output-voltage relationship and using a normal-operation-wireless-power-transmission-efficiency-to-digital-ping-wireless-power-transmission-efficiency relationship to predict a wireless power transmission efficiency that would be experienced if the system were to enter normal operation. Based on this efficiency prediction, the system can issue alerts and can decide whether or not to enter normal operation.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: April 13, 2021
    Assignee: Apple Inc.
    Inventors: Ge Wang, Stephen C. Terry, Wynand Malan, Zachary S. Harris
  • Patent number: 10938307
    Abstract: This disclosure describes a system and a method to limit (i.e., regulate) the input power of a power converter as a function of the voltage and/or loading condition of a power-limited source such as a battery. In some embodiments, the power converter may comprise a transconductance amplifier that may produce a sink current to a current mirror, which in turn that may provide an adjusted current limit threshold to the power converter. The power converter may utilize the current limit threshold to perform cycle-by-cycle current limiting, thus regulating the input power drawn from the battery.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: March 2, 2021
    Assignee: Apple Inc.
    Inventors: Yongxuan Hu, Weiyun Chen, Stephen C. Terry, Chi Kin Ho, Norah E. Nakibuuka
  • Publication number: 20200328630
    Abstract: A wireless power receiving device has a coil that receives wireless power signals from a wireless power transmitting device and has a rectifier that produces direct-current power across rectifier output terminals using the received wireless power signals. A load in the wireless power receiving device receives a direct-current output voltage from the rectifier output terminals. In-band communications are supported in which an amplitude-shift keying communications scheme or other communications scheme is used by a data transmitter in the wireless power receiving device to transmit in-band data through the coil. In-band data is transmitted by modulating one or more transistors that are coupled to the coil and other wireless power receiving circuitry in series with one or more capacitors and is transmitted by modulating current flow through a ballast transistor or other adjustable load that is coupled across the rectifier output terminals.
    Type: Application
    Filed: January 21, 2020
    Publication date: October 15, 2020
    Inventors: Weiyun Chen, Stephen C. Terry
  • Publication number: 20200227935
    Abstract: A battery case has first and second coils on opposing sides of a battery and has switching circuitry that is coupled between the first and second coils. The battery case has a battery that provides supplemental battery power wirelessly to a wireless power receiving device via the second coil when the switching circuitry is in an open state. The case can also receive power wirelessly with the first coil from a wireless charging mat when the switching circuitry is in the open state. In a closed state, the switching circuitry shorts the first and second coils together so that current flowing through the first coil flows through the second coil in series and so that wireless power from the wireless charging mat that is received with the first coil is transmitted wirelessly to the wireless power receiving device using the second coil.
    Type: Application
    Filed: May 28, 2019
    Publication date: July 16, 2020
    Inventors: Narendra S. Mehta, Stephen C. Terry, Rohan Dayal
  • Patent number: 10682498
    Abstract: Pressure sensors and associated structures that may have reduced light sensitivity. An example may provide structures reducing light at a component on a membrane of a pressure sensor.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: June 16, 2020
    Assignee: SILICON MICROSTRUCTURES, INC.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Patent number: 10641672
    Abstract: Pressure sensors and associated structures that may facilitate the use of automated connection processes and tools. An example may provide structures for aligning interconnect wires to pressure sensor bondpads in order to facilitate the use of automated processes and tools.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 5, 2020
    Assignee: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20190341796
    Abstract: An electronic device may receive or provide power using bidirectional wired and wireless power converters. A bypass path may be included to bypass the battery charger and to allow direct power transfers from a connector of the electronic device to the wireless power converter or from the wireless power converter to the connector of the electronic device. Current limiting and regulation circuitry may also be included.
    Type: Application
    Filed: September 7, 2018
    Publication date: November 7, 2019
    Applicant: Apple Inc.
    Inventors: Bin Gu, Yongxuan Hu, Stephen C. Terry, Di Zhao, Ruchi J. Parikh, Michael D. Black, Weiyun Chen
  • Publication number: 20190312459
    Abstract: A wireless power system has a wireless power transmitting device that uses an inverter to apply alternating-current signals to a coil. In response, the coil generates wireless power signals that are received by a coil in a wireless power receiving circuit of a wireless power receiving device. While wireless power is being transferred to the receiving device, the receiving device communicates with the wireless power transmitting device using in-band communications. The wireless power receiving device can issue a halt-wireless-power-transmission command using in-band communications to direct the wireless power transmitting device to stop transmitting wireless power. When power is not being transferred, the wireless power transmitting device transmits a series of short impulses that are monitored by the receiving device. The receiving device can direct the transmitting device to resume power transmission by adjusting an adjustable impedance circuit coupled to the wireless power receiving circuit.
    Type: Application
    Filed: July 31, 2018
    Publication date: October 10, 2019
    Inventors: Brandon R. Garbus, Daniel Huber, Jason P. Marini, Stephen C. Terry, YiBo Liu
  • Patent number: 10355514
    Abstract: A wireless power transmitting device may transmit power wirelessly to a wireless power receiving device. The wireless power receiving device may be a portable electronic device with an array of wireless power receiving coils that receive wireless power from wireless power transmitting coils in the wireless power transmitting device. Each receiving coil in the array of wireless power receiving coils may be coupled to a respective rectifier. Control circuitry of the wireless power receiving device may be configured to determine which rectifiers to enable for synchronous rectification. The control circuitry may be configured to enable at least one rectifier based on the alternating-current voltages produced by each coil in the array of receiving coils. The control circuitry may also be configured to enable at least one rectifier based on the output current from each rectifier.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: July 16, 2019
    Assignee: Apple Inc.
    Inventors: Stephen C. Terry, Nilay D. Jani, Bin Gu, Yongxuan Hu
  • Publication number: 20190214850
    Abstract: A device includes a charge controller to regulate a battery output voltage based on an input voltage and an input current received from a charging circuit. A loop controller monitors the input voltage and the input current to generate a feedback signal to adjust the input voltage to the charge controller.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 11, 2019
    Inventors: Stephen C. Terry, Paul Brohlin
  • Publication number: 20190190324
    Abstract: A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.
    Type: Application
    Filed: September 20, 2017
    Publication date: June 20, 2019
    Inventors: Chad A. Bossetti, Christopher S. Graham, David W. Ritter, Todd K. Moyer, Steven G. Herbst, Shimon Elkayam, Nileshbhai J. Shah, Stephen C. Terry, Zaki Moussaoui
  • Publication number: 20190074764
    Abstract: This disclosure describes a system and a method to limit (i.e., regulate) the input power of a power converter as a function of the voltage and/or loading condition of a power-limited source such as a battery. In some embodiments, the power converter may comprise a transconductance amplifier that may produce a sink current to a current mirror, which in turn that may provide an adjusted current limit threshold to the power converter. The power converter may utilize the current limit threshold to perform cycle-by-cycle current limiting, thus regulating the input power drawn from the battery.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 7, 2019
    Inventors: Yongxuan Hu, Weiyun Chen, Stephen C. Terry, Chi Kin Ho, Norah E. Nakibuuka
  • Patent number: 10224744
    Abstract: A device includes a charge controller to regulate a battery output voltage based on an input voltage and an input current received from a charging circuit. A loop controller monitors the input voltage and the input current to generate a feedback signal to adjust the input voltage to the charge controller.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: March 5, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Stephen C. Terry, Paul Brohlin
  • Publication number: 20190052102
    Abstract: Disclosed herein are a method, system and non-transitory program storage device for protecting a power converter from overvoltage conditions in wireless power transfer. In some embodiments, the power converter may use a controllable current sink to discharge an output voltage of the power converter's receiver so as to maintain the output voltage below an overvoltage threshold. In some embodiments, a peak current of the current sink may be controlled as a function of the output voltage. In some embodiments, the current sink may be enabled and/or disabled according to a duty cycle and a frequency, wherein the frequency may be maintained beyond an audible range. In some embodiments, the power converter may bypass the receiver responsive to the output voltage exceeding a limit, thus effectively disabling the power transfer from a transmitter to the receiver.
    Type: Application
    Filed: December 13, 2017
    Publication date: February 14, 2019
    Inventors: Weiyun Chen, Stephen C. Terry, Yongxuan Hu
  • Patent number: 10041851
    Abstract: Pressure sensors and their methods of manufacturing, where the pressure sensors have a small, thin form factor and may include features designed to improve manufacturability and where the method of manufacturing may improve yield and reduce overall costs.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: August 7, 2018
    Assignee: SILICON MICROSTRUCTURES, INC.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20180099120
    Abstract: Pressure sensors and associated structures that may have reduced light sensitivity. An example may provide structures reducing light at a component on a membrane of a pressure sensor.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 12, 2018
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20180062416
    Abstract: A wireless power transmitting device may transmit power wirelessly to a wireless power receiving device. The wireless power receiving device may be a portable electronic device with an array of wireless power receiving coils that receive wireless power from wireless power transmitting coils in the wireless power transmitting device. Each receiving coil in the array of wireless power receiving coils may be coupled to a respective rectifier. Control circuitry of the wireless power receiving device may be configured to determine which rectifiers to enable for synchronous rectification. The control circuitry may be configured to enable at least one rectifier based on the alternating-current voltages produced by each coil in the array of receiving coils. The control circuitry may also be configured to enable at least one rectifier based on the output current from each rectifier.
    Type: Application
    Filed: April 11, 2017
    Publication date: March 1, 2018
    Inventors: Stephen C. Terry, Nilay D. Jani, Bin Gu, Yongxuan Hu
  • Publication number: 20170131167
    Abstract: Pressure sensors and associated structures that may facilitate the use of automated connection processes and tools. An example may provide structures for aligning interconnect wires to pressure sensor bondpads in order to facilitate the use of automated processes and tools.
    Type: Application
    Filed: October 17, 2016
    Publication date: May 11, 2017
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro
  • Publication number: 20170089788
    Abstract: Pressure sensors and their methods of manufacturing, where the pressure sensors have a small, thin form factor and may include features designed to improve manufacturability and where the method of manufacturing may improve yield and reduce overall costs.
    Type: Application
    Filed: August 3, 2016
    Publication date: March 30, 2017
    Applicant: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Stephen C. Terry, Justin Gaynor, Omar Abed, Fernando Alfaro