Patents by Inventor Stephen H. Brown

Stephen H. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170183577
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Sara K. Green, Camden N. Henderson
  • Publication number: 20170183579
    Abstract: Systems and methods are provided for integration of use deasphalted resid as a feed for fuels and/or lubricant base stock production with use of the corresponding deasphalter rock for gasification to generate hydrogen and/or fuel for the fuels and/or lubricant production process. The integration can include using hydrogen generated during gasification as a fuel to provide heat for solvent processing and/or using the hydrogen for hydroprocessing of deasphalted oil.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Kendall S. Fruchey, Sara K. Green, Anjaneya S. Kovvali, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20170183580
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20170183578
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks. The catalytic processing can correspond to processing in at least two stages. The amount of conversion performed in each stage can be varied to produce bright stocks with various properties.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Charles L. Baker, JR., Camden N. Henderson
  • Publication number: 20170183576
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey
  • Publication number: 20170022433
    Abstract: Systems and methods are provided for fixed bed hydroprocessing of deasphalter rock. Instead of attempting to process vacuum resid in a fixed bed processing unit, vacuum resid is deasphalted to form a deasphalted oil and deasphalter residue or rock. The rock can then be hydroprocessed in a fixed bed reaction zone, optionally after combining the rock with an aromatic co-feed and/or a hydroprocessing solvent. This can allow for improved conversion of the deasphalter rock and/or improved combined conversion of the deasphalter rock and deasphalted oil.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 26, 2017
    Inventors: Stephen H. BROWN, Warren B. AMES, Federico BARRAI
  • Publication number: 20170002273
    Abstract: Systems and methods are provided for upgrading catalytic slurry oil to form naphtha boiling range and/or distillate boiling range fuel products. It has been unexpectedly discovered that catalytic slurry oil can be separately hydroprocessed under fixed bed conditions to achieve substantial conversion of asphaltenes within the slurry oil (such as substantially complete conversion) while reducing or minimizing the amount of coke formation on the hydroprocessing catalyst. After hydroprocessing, the hydroprocessed effluent can be processed under fluid catalytic cracking conditions to form various products, including distillate boiling range fuels and/or naphtha boiling range fuels. Another portion of the effluent can be suitable for use as a low sulfur fuel oil, such as a fuel oil having a sulfur content of 0.1 wt % or less.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 5, 2017
    Inventors: Sheryl B. RUBIN-PITEL, Kenneth C.H. KAR, Stephen H. BROWN, Federico BARRAI, Brian A. CUNNINGHAM
  • Publication number: 20170002279
    Abstract: Systems and methods are provided for upgrading catalytic slurry oil to form naphtha boiling range and/or distillate boiling range fuel products. It has been unexpectedly discovered that catalytic slurry oil can be separately hydroprocessed under fixed bed conditions to achieve substantial conversion of asphaltenes within the slurry oil (such as substantially complete conversion) while reducing/minimizing the amount of coke formation on the hydroprocessing catalyst. After hydroprocessing, the hydroprocessed effluent can be processed under fluid catalytic cracking conditions to form various products, including distillate boiling range fuels and/or naphtha boiling range fuels. Another portion of the effluent can be suitable for use as a low sulfur fuel oil, such as a fuel oil having a sulfur content of 0.1 wt % or less.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 5, 2017
    Inventors: Stephen H. BROWN, Federico BARRAI, Brian A. CUNNINGHAM, Sheryl B. RUBIN-PITEL, Kenneth C.H. KAR
  • Publication number: 20160298048
    Abstract: Methods are provided for processing deasphalted gas oils derived from thermally cracked resid fractions to form Group I, Group II, and/or Group III lubricant base oils. The yield of lubricant base oils (optionally also referred to as base stocks) can be increased by thermally cracking a resid fraction at an intermediate level of single pass severity relative to conventional methods. By performing thermal cracking to a partial level of conversion, compounds within a resid fraction that are beneficial for increasing both the viscosity and the viscosity index of a lubricant base oil can be retained, thus allowing for an improved yield of higher viscosity lubricant base oils from a thermally cracked resid fraction.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 13, 2016
    Inventors: Stephen H. Brown, Brenda A. Raich, Beatrice M. Gooding, Stephen M. Davis, Federico Barrai, Warren B. Ames, Keith K. Aldous
  • Patent number: 9327260
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 3, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Di Nicolantonio, John J. Waldrop
  • Publication number: 20160090332
    Abstract: Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
    Type: Application
    Filed: August 18, 2015
    Publication date: March 31, 2016
    Inventors: John S. Buchanan, Stephen H. Brown, Lorenzo C. DeCaul, Brett T. Loveless, Rohit Vijay, Stephen J. McCarthy, Michel Daage, Mayank Shekhar
  • Publication number: 20160090334
    Abstract: Methods are provided for forming aromatic compounds from a highly unsaturated aliphatic feeds optionally in combination with methanol. The method can include dehydrogenating a feed containing at least about 50 vol % C1-C4 alkanes under dehydrogenation conditions to form a dehydrogenation effluent containing at least about 25 vol % alkynes. Alternatively, other sources of alkyne-containing feeds can be used. At least a portion of the alkyne-containing feed can then be converted under effective conversion conditions to form a conversion effluent comprising a hydrocarbon product containing aromatic compounds.
    Type: Application
    Filed: August 18, 2015
    Publication date: March 31, 2016
    Inventors: Frank Hershkowitz, Stephen H. Brown, Paul F. Keusenkothen, Tilman W. Beutel, Stephen J. McCarthy, Michel Daage, Rohit Vijay, Samia IIias
  • Patent number: 9243193
    Abstract: The disclosure relates to processes for upgrading heavy hydrocarbon oils such as heavy crude oils, atmospheric residuum, vacuum residuum, heavy oils from catalytic treatment, heavy cycle oils from fluid catalytic cracking, thermal tars, as oils from visbreaking, oils from oil sands, bitumen, deasphlter rock, and heavy oils derived from coal. The process utilizes a utility fluid including recycled liquid hydroprocessed product containing a significant amount of single or multi-ring aromatics. Unlike conventional fixed bed resid hydroprocessing, the process can be operated at temperatures pressures and reactor conditions that favor the desired hydrocracking reactions over aromatics hydrogenation reduce the coking tendencies of heavy hydrocarbon oils.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 26, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen H. Brown, Stephen Mark Davis
  • Patent number: 9102884
    Abstract: The invention relates to a hydroprocessed product that can be produced by hydroprocessing tar, such as a tar obtained from hydrocarbon pyrolysis. The invention also relates to methods for producing such a hydroprocessed product, and the use of such a product, e.g., as a fuel oil blending component.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 11, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Paul M. Edwards, Stephen H. Brown, Frank C. Wang, S. Mark Davis
  • Patent number: 9090525
    Abstract: The present invention provides a process for forming a refined hydrocarbon that includes providing a feed including methanol, dimethyl ether or a mixture thereof, and contacting the feed with a methanol conversion catalyst under suitable conditions to yield an intermediate composition including olefins having at least two carbon atoms. The intermediate composition is introduced to an oligomerization catalyst under suitable conditions to yield gasoline boiling range components and distillate boiling range components.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: July 28, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Stephen H. Brown
  • Patent number: 9090836
    Abstract: The invention relates to upgraded pyrolysis products, processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes, and the use of upgraded pyrolysis products.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 28, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, S. Mark Davis, Teng Xu, Keith G. Reed, Ananthakrishnan Bhasker
  • Patent number: 9057025
    Abstract: The invention is a process for removing impurities from an aromatics stream and apparatus for the practice thereof, whereby trace olefins and dienes are removed from aromatic plant feedstocks using a reactor design that enables the product to be backmixed with the feedstock and that enables a feed/effluent heat exchanger.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 16, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Stephen H. Brown
  • Patent number: 8940950
    Abstract: The process relates to the use of any naphtha-range stream containing a portion of C8+ aromatics combined with benzene, toluene, and other non-aromatics in the same boiling range to produce toluene. By feeding the A8+ containing stream to a dealkylation/transalkylation/cracking reactor to increase the concentration of toluene in the stream, a more suitable feedstock for the methylation reaction can be produced. This stream can be obtained from a variety of sources, including the pygas stream from a steam cracker, “cat naphtha” from a fluid catalytic cracker, or the heavier portion of reformate.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Justin M. Ellrich, Robert D. Strack, John W. Rebeck, Allen S. Gawlik, Larry L. Iaccino, Glenn C. Wood, Stephen H. Brown, Timothy Paul Bender
  • Publication number: 20140275669
    Abstract: Methods are provided for oligomerizing a dilute ethylene feed to form oligomers suitable for use as fuels and/or lubricant base oils. The fuels and/or lubricant base oils are formed by oligomerization of impure dilute ethylene with a zeolitic catalyst, where the zeolitic catalyst is resistant to the presence of poisons such as sulfur and nitrogen in the ethylene feed. The oligomers can also be formed in presence of diluents such as light paraffins.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michel Daage, Stephen H. Brown, Eugenio Sanchez, Nazeer A. Bhore, Robert Charles William Welch, Gretchen L. Holtzer, Arthur Thomas Andrews
  • Publication number: 20140262947
    Abstract: The disclosure relates to processes for upgrading heavy hydrocarbon oils such as heavy crude oils, atmospheric residuum, vacuum residuum, heavy oils from catalytic treatment, heavy cycle oils from fluid catalytic cracking, thermal tars, as oils from visbreaking, oils from oil sands, bitumen, deasphlter rock, and heavy oils derived from coal. The process utilizes a utility fluid including recycled liquid hydroprocessed product containing a significant amount of single or multi-ring aromatics. Unlike conventional fixed bed resid hydroprocessing, the process can be operated at temperatures pressures and reactor conditions that favor the desired hydrocracking reactions over aromatics hydrogenation reduce the coking tendencies of heavy hydrocarbon oils.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stephen H. Brown, Stephen Mark Davis