Patents by Inventor Stephen Hay

Stephen Hay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141541
    Abstract: An apparatus for electroplating a metal on a semiconductor substrate with high control over plated thickness on a die-level includes an ionically resistive ionically permeable element (e.g., a plate with channels), where the element allows for flow of ionic current through the element towards the substrate during electroplating, where the element includes a plurality of regions, each region having a pattern of varied local resistance, and where the pattern of varied local resistance repeats in at least two regions. An electroplating method includes providing a semiconductor substrate to an electroplating apparatus having an ionically resistive ionically permeable element or a grid-like shield having a pattern correlating with a pattern of features on the substrate, and plating metal, while the pattern on the substrate remains spatially aligned with the pattern of the element or the grid-like shield for at least a portion of the total electroplating time.
    Type: Application
    Filed: March 15, 2022
    Publication date: May 2, 2024
    Inventors: Lee Peng Chua, Gabriel Hay Graham, Bryan L. Buckalew, Stephen J. Banik, II, Santosh Kumar, James Isaac Fortner, Robert Rash, Steven T. Mayer
  • Publication number: 20240076795
    Abstract: An ionically resistive ionically permeable element for use in an electroplating apparatus includes ribs to tailor hydrodynamic environment proximate a substrate during electroplating. In one implementation, the ionically resistive ionically permeable element includes a channeled portion that is at least coextensive with a plating face of the substrate, and a plurality of ribs extending from the substrate-facing surface of the channeled portion towards the substrate. Ribs include a first plurality of ribs of full maximum height and a second plurality of ribs of smaller maximum height than the full maximum height. In one implementation the ribs of smaller maximum height are disposed such that the maximum height of the ribs gradually increases in a direction from one edge of the element to the center of the element.
    Type: Application
    Filed: January 19, 2022
    Publication date: March 7, 2024
    Inventors: Stephen J. Banik, II, Gabriel Hay Graham, Bryan L. Buckalew, Robert Rash, Lee Peng Chua, Frederick Dean Wilmot, Chien-Chieh Lin
  • Patent number: 11918138
    Abstract: A beverage dispensing apparatus having a height-adjustable support member for supporting a beverage vessel at a plurality of different support positions. The beverage dispensing apparatus may include a beverage dispensing outlet for dispensing a beverage and a movable support member having a top surface for supporting a beverage vessel below the beverage dispensing outlet. The movable support member may include an inner telescoping element and an outer telescoping element. An actuation assembly may be operably coupled to the movable support member to move the movable support member to modify a distance between the top surface of the movable support member and the beverage dispensing outlet. Activation of the actuation assembly may cause both the inner and outer telescoping elements to move simultaneously either towards or away from the beverage dispensing outlet.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: March 5, 2024
    Assignee: LUIGI LAVAZZA S.p.A.
    Inventors: Mark Thompson, David Hay, Stephen Hobden
  • Publication number: 20060127288
    Abstract: An air treatment system includes a filter and heating element, a plasma device, and a photocatalyst and UV light that cooperate to purify an air stream flowing through the air treatment system and protect the photocatalyst from passivating effects of certain contaminants. The air treatment system operates in two different modes. In the first mode, the air treatment system primarily draws air from and returns air to a space, and the heating element and plasma device are selectively shut off. In the second mode, the air treatment system regenerates the filter using the heating element to selectively heat the filter and release adsorbed contaminants. The plasma device is selectively turned on and chemically transforms the released contaminants into solid contaminant products. The solid contaminant products are deposited on a biased electrode of the plasma device. The UV light is turned off to ensure that the photocatalyst is inoperable during the release and transformation of the contaminants.
    Type: Application
    Filed: December 14, 2004
    Publication date: June 15, 2006
    Inventors: Stephen Hay, Susan Brandes, Norberto Lemcoff, Timothy Obee, Wayde Schmidt
  • Publication number: 20050129589
    Abstract: A layered photocatalytic/thermocatalytic coating oxidizes contaminants that adsorb onto the coating into water, carbon dioxide, and other substances. The layered coating includes a photocatalytic outer layer of titanium dioxide that oxides volatile organic compounds. The coating further includes an intermediate layer of Group VIII noble metal doped titanium dioxide that oxidizes low polarity organic molecules. An inner layer of gold on titanium dioxide oxidizes carbon monoxide to carbon dioxide. When photons of the ultraviolet light are absorbed by the coating, reactive hydroxyl radicals are formed. When a contaminant is adsorbed onto the coating, the hydroxyl radical oxidizes the contaminant to produce water, carbon dioxide, and other substances.
    Type: Application
    Filed: December 16, 2003
    Publication date: June 16, 2005
    Inventors: Di Wei, Thomas Vanderspurt, Rakesh Radhakrishnan, Stephen Hay, Timothy Obee, Wayde Schmidt
  • Publication number: 20050129591
    Abstract: A photocatalytic/thermocatalytic coating includes an inner layer of metal/titanium dioxide or metal oxide/titanium dioxide that is applied on a honeycomb and an outer layer of titanium dioxide or metal oxide doped titanium dioxide applied on the inner layer. The inner layer of can be gold/titanium dioxide, platinum/titanium dioxide, or manganese oxide/titanium dioxide. The outer layer of titanium dioxide or metal oxide doped titanium dioxide oxides volatile organic compounds to carbon dioxide, water, and other substances. As the outer layer is thin and porous, the contaminants in the air can diffuse through the outer layer and adsorb onto the inner layer. When photons of the ultraviolet light are absorbed by the coating, reactive hydroxyl radicals are formed that oxidize the contaminant to produce water, carbon dioxide, and other substances.
    Type: Application
    Filed: December 16, 2003
    Publication date: June 16, 2005
    Inventors: Di Wei, Thomas Vanderspurt, Stephen Hay, Wayde Schmidt, Timothy Obee
  • Publication number: 20050118078
    Abstract: A system is disclosed which incorporates low pressure drop contaminant removal from gas phases or streams, which advantageously can be used to enhance efficiency, improve humidity characteristics, and reduce capital cost of air handing systems such as HVAC systems and the like. Placement of the low pressure drop contaminant removal mechanism for enhancing effectiveness of same is also disclosed.
    Type: Application
    Filed: May 28, 2004
    Publication date: June 2, 2005
    Inventors: Gregory Dobbs, Timothy Obee, Darren Sheehan, James Freihaut, Stephen Hay, Norberto Lemcoff, Joseph Sangiovanni, Mary Saroka, Robert Hall
  • Publication number: 20050069464
    Abstract: A photocatalytic coating oxidizes volatile organic compounds that adsorb onto the coating into water, carbon dioxide, and other substances. When photons of the ultraviolet light are absorbed by the coating, reactive hydroxyl radicals are formed. When a contaminant is adsorbed onto the coating, the hydroxyl radical oxidizes the contaminant to produce water, carbon dioxide, and other substances. Humidity has an effect on the photocatalytic performance of the titanium dioxide coating. Water adsorbs strongly on the coating, and water and contaminants compete for adsorption sites on the coating. A magnetron emits microwaves of the desired wavelength. The microwaves are only absorbed by the adsorbed water, desorbing the water from the photocatalytic coating and creating additional photooxidation sites for the contaminants.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 31, 2005
    Inventors: Timothy Obee, Stephen Hay
  • Publication number: 20050069471
    Abstract: A photocatalytic coating oxidizes volatile organic compounds that adsorb onto the coating into water, carbon dioxide, and other substances. When photons of the ultraviolet light are absorbed by the coating, reactive hydroxyl radicals are formed. When a contaminant is adsorbed onto the coating, the hydroxyl radical oxidizes the contaminant to produce water, carbon dioxide, and other substances. A humidity sensor or a temperature sensor detects the humidity or temperature, respectively, of the air entering the air purification system. Information about the optimal microwave wavelength and intensity for various humidity and temperature levels are stored in a control of a microwave actuator. The microwave actuator determines the optimal wavelength or intensity based on the sensed humidity and temperature level and sends a signal to a magnetron to emit a microwave of the desired wavelength or intensity.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 31, 2005
    Inventors: Timothy Obee, Stephen Hay
  • Publication number: 20050061656
    Abstract: A lamp including a reflective portion is utilized in a fluid purification system to maximize the light delivery to a photocatalytic coating that oxidizes gaseous contaminants that adsorb onto the surface to form carbon dioxide, water, and other substances. An ultraviolet light source positioned proximate to the honeycomb activates the titanium dioxide coating. In one example, the reflective portion is a reflective coating. Light directed out of the non-reflective portion of the lamp travels towards the honeycomb and absorbs onto the photocatalytic coating. Light directed towards the reflective portion on the lamp is reflected off the surface of the reflective portion and passes through the non-reflective portion of the lamp to also absorb onto the photocatalytic coating. The reflective portion reflects light towards the honeycomb that would otherwise be misdirected away from the honeycomb, increasing efficiency of the fluid purification system.
    Type: Application
    Filed: September 23, 2003
    Publication date: March 24, 2005
    Inventors: Jeffrey Benoit, Stephen Hay, Timothy Obee