Patents by Inventor Stephen J. Vanslyke

Stephen J. Vanslyke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974845
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: May 7, 2024
    Assignee: Dexcom, Inc.
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20240071593
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 29, 2024
    Inventors: Anna Leigh DAVIS, Scott M. BELLIVEAU, Naresh C. BHAVARAJU, Leif N. BOWMAN, Rita M. CASTILLO, Alexandra Elena CONSTANTIN, Rian W. DRAEGER, Laura J. DUNN, Gary Brian GABLE, Arturo GARCIA, Thomas HALL, Hari HAMPAPURAM, Christopher Robert HANNEMANN, Anna Claire HARLEY-TROCHIMCZYK, Nathaniel David HEINTZMAN, Andrea Jean JACKSON, Lauren Hruby JEPSON, Apurv Ullas KAMATH, Katherine Yerre KOEHLER, Aditya Sagar MANDAPAKA, Samuel Jere MARSH, Gary A. MORRIS, Subrai Girish PAI, Andrew Attila PAL, Nicholas POLYTARIDIS, Philip Thomas PUPA, Eli REIHMAN, Ashley Anne RINDFLEISCH, Sofie Wells SCHUNK, Peter C. SIMPSON, Daniel S. SMITH, Stephen J. VANSLYKE, Matthew T. VOGEL, Tomas C. WALKER, Benjamin Elrod WEST, Atiim Joseph WILEY
  • Patent number: 11903697
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 20, 2024
    Assignee: DEXCOM, INC.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Lauren Hruby Jepson, Jonathan Hughes, Apurv Ullas Karnath, Anna Leigh Davis, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 11883126
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: January 30, 2024
    Assignee: Dexcom, Inc.
    Inventors: Arturo Garcia, Peter C Simpson, Apurv U Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 11879887
    Abstract: Systems and methods for processing sensor data and end of life detection are provided. In some embodiments, a method for determining the end of life of a continuous analyte sensor includes evaluating a plurality of risk factors using an end of life function to determine an end of life status of the sensor and providing an output related to the end of life status of the sensor. The plurality of risk factors may be selected from the list including the number of days the sensor has been in use, whether there has been a decrease in signal sensitivity, whether there is a predetermined noise pattern, whether there is a predetermined oxygen concentration pattern, and error between reference BG values and EGV sensor values.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 23, 2024
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Hari Hampapuram, Apurv Ullas Kamath, Aarthi Mahalingam, Dmytro Sokolovskyy, Stephen J. Vanslyke
  • Publication number: 20240008822
    Abstract: An amount of glycemic dysfunction associated with mis-timing (e.g., delay) of meal boluses based on replay analysis is determined. The amount of dysfunction of historical or estimated bolusing as compared to an optimally timed bolus based on the replay analysis is quantified and visualized. Inferences may be made about diabetes meal management regarding inputs from a patient.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Inventors: Stephen D. Patek, Stephen J. Vanslyke
  • Patent number: 11837348
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: December 5, 2023
    Assignee: Dexcom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian W. Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea Jean Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel S. Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20230371850
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 23, 2023
    Applicant: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20230346320
    Abstract: An amount of glycemic dysfunction associated with mis-timing (e.g., delay) of meal boluses based on replay analysis is determined. The amount of dysfunction of historical or estimated bolusing as compared to an optimally timed bolus based on the replay analysis is quantified and visualized. Inferences may be made about diabetes meal management regarding inputs from a patient.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Stephen D. Patek, Stephen J. Vanslyke
  • Publication number: 20230329595
    Abstract: Systems and methods for analyte monitoring, particularly systems and methods for monitoring and managing life of a battery in an analyte sensor system worn by a user, are provided.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Jose Hector HERNANDEZ-ROSAS, Mark DERVAES, Peter C. SIMPSON, Apurv Ullas KAMATH, Tom MILLER, Shawn LARVENZ, Stephen J. VANSLYKE
  • Patent number: 11714060
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 1, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Patent number: 11696728
    Abstract: An amount of glycemic dysfunction associated with mis-timing (e.g., delay) of meal boluses based on replay analysis is determined. The amount of dysfunction of historical or estimated bolusing as compared to an optimally timed bolus based on the replay analysis is quantified and visualized. Inferences may be made about diabetes meal management regarding inputs from a patient.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: July 11, 2023
    Assignee: Dexcom, Inc.
    Inventors: Stephen D. Patek, Stephen J. Vanslyke
  • Publication number: 20230210411
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user’s interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: February 28, 2023
    Publication date: July 6, 2023
    Applicant: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 11690538
    Abstract: Systems and methods for analyte monitoring, particularly systems and methods for monitoring and managing life of a battery in an analyte sensor system worn by a user, are provided.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: July 4, 2023
    Assignee: Dexcom, Inc.
    Inventors: Jose Hector Hernandez-Rosas, Mark Dervaes, Peter C. Simpson, Apurv Ullas Kamath, Tom Miller, Shawn Larvenz, Stephen J. Vanslyke
  • Publication number: 20230181065
    Abstract: Systems and methods for processing sensor data and end-of-life detection are provided. In some embodiments, a method for determining the end-of-life of a continuous analyte sensor includes receiving a sensor signal from an analyte sensor. A plurality of risk factors associated with end-of-life symptoms of analyte sensors is evaluated. The risk factors include a downward drift in sensor sensitivity over time, an amount of non-symmetrical, non-stationary noise and a duration of noise. An end-of-life status of the analyte sensor is determined based at least in part on the evaluating. An output related to the end-of-life status of the analyte sensor is provided.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 15, 2023
    Inventors: Arturo Garcia, Stephen J. Vanslyke, Apurv U. Kamath, Liang Wang, Ghazaleh R. Esmaili, Alexandra E. Constantin, Daiting Rong, Rasoul Yousefi, Neda Ehtiati, Robert Michael Naggs, Yuxi Zhang
  • Patent number: 11656195
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: May 23, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20230140651
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Application
    Filed: October 26, 2022
    Publication date: May 4, 2023
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv U. Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Publication number: 20230013632
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Inventors: Anna Leigh DAVIS, Scott M. BELLIVEAU, Naresh C. BHAVARAJU, Leif N. BOWMAN, Rita M. CASTILLO, Alexandra Elena CONSTANTIN, Rian W. DRAEGER, Laura J. DUNN, Gary Brian GABLE, Arturo GARCIA, Thomas HALL, Hari HAMPAPURAM, Christopher Robert HANNEMANN, Anna Claire HARLEY-TROCHIMCZYK, Nathaniel David HEINTZMAN, Andrea Jean JACKSON, Lauren Hruby JEPSON, Apurv Ullas KAMATH, Katherine Yerre KOEHLER, Aditya Sagar MANDAPAKA, Samuel Jere MARSH, Gary A. MORRIS, Subrai Girish PAI, Andrew Attila PAL, Nicholas POLYTARIDIS, Philip Thomas PUPA, Eli REIHMAN, Ashley Anne RINDFLEISCH, Sofie Wells SCHUNK, Peter C. SIMPSON, Daniel S. SMITH, Stephen J. VANSLYKE, Matthew T. VOGEL, Tomas C. WALKER, Benjamin Elrod WEST, Atiim Joseph WILEY
  • Patent number: 11504004
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 22, 2022
    Assignee: Dexcom, Inc.
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Publication number: 20220313124
    Abstract: A method for providing clinical data representative of a concentration of a blood analyte in a patient includes receiving a signal from a continuous analyte sensor located within interstitial fluid of the patient and independently modeling two or more factors that influence the signal, the factors arising from individualized characteristics of the sensor and/or individualized physiological characteristics of the patient.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 6, 2022
    Inventors: Arturo Garcia, Liang Wang, Lauren H. Jepson, Rui Ma, Ghazaleh R. Esmaili, Stephen J. Vanslyke