Patents by Inventor Stephen Laderman

Stephen Laderman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5256550
    Abstract: The present invention comprises a method of fabricating devices and circuits employing at least one heteroepitaxial layer under strain. The thickness of the heteroepitaxial layer is more than two times the calculated equilibrium critical thickness for an uncapped heteroepitaxial layer upon a crystalline substrate, based on previously known equilibrium theory for the uncapped layer. Subsequent to growth of the heteroepitaxial layer, the structure is processed at temperatures higher than the growth temperature of the heteroepitaxial layer.The strained heteroepitaxial layer (second layer) is epitaxially grown upon the surface of a first, underlaying crystalline layer, creating a heterojunction. Subsequently a third crystalline layer is deposited or grown upon the major exposed surface of the second, strained heteroepitaxial layer. The preferred manner of growth of the third crystalline layer is epitaxial growth.
    Type: Grant
    Filed: June 12, 1991
    Date of Patent: October 26, 1993
    Assignee: Hewlett-Packard Company
    Inventors: Stephen Laderman, Martin Scott, Theodore I. Kamins, Judy L. Hoyt, Clifford A. King, James F. Gibbons, David B. Noble
  • Patent number: 5084411
    Abstract: Improved devices with silicon to SiGe alloy heterojunctions are provided for in accordance with the following discoveries. X-ray topography and transmission electron microscopy were used to quantify misfit-dislocation spacings in as-grown Si.sub.1-x Ge.sub.x films formed by Limited Reaction Processing (LRP), which is a chemical vapor deposition technique. These analysis techniques were also used to study dislocation formation during annealing of material grown by both LRP and by molecular beam epitaxy (MBE). The thickness at which misfit dislocations first appear in as-grown material was similar for both growth techniques. The thermal stability of capped and uncapped films was also investigated after rapid thermal annealing in the range of 625.degree. to 1000.degree. C. Significantly fewer misfit dislocations were observed in samples containing an epitaxial silicon cap.
    Type: Grant
    Filed: November 29, 1988
    Date of Patent: January 28, 1992
    Assignee: Hewlett-Packard Company
    Inventors: Stephen Laderman, Martin Scott, Theodore I. Kamins, Judy L. Hoyt, Clifford A. King, James F. Gibbons, David B. Noble