Patents by Inventor Stephen M. Spinella

Stephen M. Spinella has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11530304
    Abstract: A biofabricated material comprising a network of crosslinked collagen fibrils produced from recombinant collagen that contains substantially no 3-hydroxyproline residues is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: December 20, 2022
    Assignee: MODERN MEADOW, INC.
    Inventors: Brendan Patrick Purcell, David Thomas Williamson, Lixin Dai, Darryl Miles Cassingham, Stephen M. Spinella, Katherine Amy Congdon
  • Patent number: 11214844
    Abstract: The invention herein provides biofabricated materials having zonal properties and methods of making biofabricated materials having zonal properties.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: January 4, 2022
    Assignee: Modern Meadow, Inc.
    Inventors: Brendan Patrick Purcell, Suzanne Lee, Lixin Dai, Katherine Amy Congdon, Stephen M. Spinella, Chi Man Ng
  • Patent number: 11001679
    Abstract: A biofabricated material containing a network of crosslinked collagen fibrils is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability. It can have substantially identical grain, texture and other aesthetic properties on both sides distinct from natural leather where the grain increases from one side (e.g.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: May 11, 2021
    Assignee: Modern Meadow, Inc.
    Inventors: Brendan Patrick Purcell, David Thomas Williamson, Lixin Dai, Darryl Miles Cassingham, Stephen M. Spinella
  • Patent number: 10370504
    Abstract: Described herein is a method for producing a biofabricated material from collagen or collagen-like proteins which are recombinantly produced and which contain substantially no 3-hydroxyproline. The collagen or collagen-like proteins are isolated from animal sources, or produced by recombinant DNA techniques or by chemical synthesis. The collagen or collagen-like proteins are fibrillated, crosslinked, dehydrated and lubricated thus forming the biofabricated material having a substantially uniform network of collagen fibrils.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: August 6, 2019
    Assignee: MODERN MEADOW, INC.
    Inventors: Brendan Patrick Purcell, David Thomas Williamson, Francoise Suzanne Marga, Susan J. Schofer, Darryl Miles Cassingham, Stephen M. Spinella, Amy Congdon
  • Publication number: 20190203000
    Abstract: A biofabricated material containing a network of crosslinked collagen fibrils is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability. It can have substantially identical grain, texture and other aesthetic properties on both sides distinct from natural leather where the grain increases from one side (e.g.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 4, 2019
    Applicant: MODERN MEADOW, INC.
    Inventors: Brendan Patrick PURCELL, David Thomas WILLIAMSON, Lixin DAI, Darryl Miles CASSINGHAM, Stephen M. SPINELLA
  • Patent number: 10301440
    Abstract: A biofabricated material containing a network of crosslinked collagen fibrils is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability. It can have substantially identical grain, texture and other aesthetic properties on both sides distinct from natural leather where the grain increases from one side (e.g.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: May 28, 2019
    Assignee: MODERN MEADOW, INC.
    Inventors: Brendan Patrick Purcell, David Thomas Williamson, Lixin Dai, Darryl Miles Cassingham, Stephen M. Spinella
  • Publication number: 20190144957
    Abstract: The invention herein provides biofabricated materials having zonal properties and methods of making biofabricated materials having zonal properties.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Applicant: MODERN MEADOW, INC.
    Inventors: Brendan Patrick PURCELL, Suzanne LEE, Lixin DAI, Katherine Amy CONGDON, Stephen M. SPINELLA, Chi Man NG
  • Publication number: 20170233838
    Abstract: A biofabricated material containing a network of crosslinked collagen fibrils is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability. It can have substantially identical grain, texture and other aesthetic properties on both sides distinct from natural leather where the grain increases from one side (e.g.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 17, 2017
    Applicant: MODERN MEADOW, INC.
    Inventors: Brendan Patrick PURCELL, David Thomas WILLIAMSON, Lixin DAI, Darryl Miles CASSINGHAM, Stephen M. SPINELLA
  • Publication number: 20170233834
    Abstract: Described herein is a method for producing a biofabricated material from collagen or collagen-like proteins which are recombinantly produced and which contain substantially no 3-hydroxyproline. The collagen or collagen-like proteins are isolated from animal sources, or produced by recombinant DNA techniques or by chemical synthesis. The collagen or collagen-like proteins are fibrillated, crosslinked, dehydrated and lubricated thus forming the biofabricated material having a substantially uniform network of collagen fibrils.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 17, 2017
    Applicant: MODERN MEADOW, INC
    Inventors: Brendan Patrick PURCELL, David Thomas Williamson, Francoise Suzanne Marga, Susan J. Schofer, Darryl Miles Cassingham, Stephen M. Spinella, Amy Congdon
  • Publication number: 20170233944
    Abstract: A biofabricated material comprising a network of crosslinked collagen fibrils produced from recombinant collagen that contains substantially no 3-hydroxyproline residues is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 17, 2017
    Applicant: MODERN MEADOW, INC.
    Inventors: Brendan Patrick PURCELL, David Thomas WILLIAMSON, Lixin DAI, Darryl Miles CASSINGHAM, Stephen M. SPINELLA, Amy CONGDON