Patents by Inventor Stephen V. Robertson

Stephen V. Robertson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9755754
    Abstract: A system and method for adaptive equalization in a communication system. The system can include a modulator, a processor coupled to the modulator, and a memory coupled to the processor. The memory can store software instructions that, when executed by the processor, cause the processor to perform operations that can include generating, for each of one or more scan frequencies of interest, an optimal bias setting of the modulator. Data indicating a selection of a range of frequencies to be processed by the communication system can be received at the processor. The operations can include determining, responsive to the receiving, the optimal bias setting corresponding to the selected range of frequencies. A bias of the modulator can be adjusted based on the determined optimal bias setting, the adjusting providing adaptive equalization of the flatness response of the communication system.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: September 5, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: Andrew F. Schaefer, John C Ceccherelli, Paul T. Coyne, Daniel S. Parsons, Stephen V. Robertson
  • Patent number: 9705280
    Abstract: A system, method, and device for efficiently maintaining a stable operational temperature for precise operation of a laser. The system can include an ambient temperature sensor, a cooler controller adapted to control a cooler having an adjustable setpoint, a processor, and a memory coupled to the processor. The memory can store software instructions that, when executed by the processor, cause the processor to perform operations that can include receiving data from the sensor and determining the ambient temperature based on the received data. The determined ambient temperature can be compared to a current setpoint. When the delta exceeds a predetermined threshold, the setpoint can be adjusted to enable the operating environment of the laser to reach a control temperature closer to ambient conditions (and within a predetermined operating temperature range of the laser). Adjusted setpoint data can be transmitted to the cooler controller to adjust the setpoint of the cooler.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: July 11, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: Andrew F. Schaefer, John C Ceccherelli, Paul T. Coyne, Stephen V. Robertson
  • Publication number: 20160245557
    Abstract: A system, method, and device for efficiently maintaining a stable operational temperature for precise operation of a laser. The system can include an ambient temperature sensor, a cooler controller adapted to control a cooler having an adjustable setpoint, a processor, and a memory coupled to the processor. The memory can store software instructions that, when executed by the processor, cause the processor to perform operations that can include receiving data from the sensor and determining the ambient temperature based on the received data. The determined ambient temperature can be compared to a current setpoint. When the delta exceeds a predetermined threshold, the setpoint can be adjusted to enable the operating environment of the laser to reach a control temperature closer to ambient conditions (and within a predetermined operating temperature range of the laser). Adjusted setpoint data can be transmitted to the cooler controller to adjust the setpoint of the cooler.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 25, 2016
    Inventors: Andrew F. Schaefer, John C. Ceccherelli, Paul T. Coyne, Stephen V. Robertson
  • Publication number: 20160248609
    Abstract: A system and method for adaptive equalization in a communication system. The system can include a modulator, a processor coupled to the modulator, and a memory coupled to the processor. The memory can store software instructions that, when executed by the processor, cause the processor to perform operations that can include generating, for each of one or more scan frequencies of interest, an optimal bias setting of the modulator. Data indicating a selection of a range of frequencies to be processed by the communication system can be received at the processor. The operations can include determining, responsive to the receiving, the optimal bias setting corresponding to the selected range of frequencies. A bias of the modulator can be adjusted based on the determined optimal bias setting, the adjusting providing adaptive equalization of the flatness response of the communication system.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 25, 2016
    Inventors: Andrew F. Schaefer, John C. Ceccherelli, Paul T. Coyne, Daniel S. Parsons, Stephen V. Robertson
  • Patent number: 9413471
    Abstract: A compact photonic radio frequency receiver system includes a laser source that is configured to generate laser light Radio frequency (RF) and local oscillator (LO) input ports may receive RF and LO signals, respectively. One or more miniature lithium niobate waveguide phase modulators may be coupled to the laser source to receive the RF and LO signals and to modulate the laser light with the RF and LO signals in a first and a second path, and to generate phase-modulated laser lights including an RF-modulated light signal and an LO-modulated light signal. A first and a second miniature filter may be coupled to the miniature lithium niobate waveguide to separate a desired spectral band in the phase-modulated laser light of the first path and to facilitate wavelength locking of the laser light of the second path. An optical combiner may combine output laser lights of the first and second filters.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: August 9, 2016
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas W. Karras, Stephen V. Robertson, Jeffrey T. Sroga, Arthur Paolella
  • Publication number: 20150132005
    Abstract: A compact photonic radio frequency receiver system includes a laser source that is configured to generate laser light Radio frequency (RF) and local oscillator (LO) input ports may receive RF and LO signals, respectively. One or more miniature lithium niobate waveguide phase modulators may be coupled to the laser source to receive the RF and LO signals and to modulate the laser light with the RF and LO signals in a first and a second path, and to generate phase-modulated laser lights including an RF-modulated light signal and an LO-modulated light signal. A first and a second miniature filter may be coupled to the miniature lithium niobate waveguide to separate a desired spectral band in the phase-modulated laser light of the first path and to facilitate wavelength locking of the laser light of the second path.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Thomas W. Karras, Stephen V. Robertson, Jeffrey T. Sroga, Arthur Paolella