Patents by Inventor Stephen William Lai

Stephen William Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10053971
    Abstract: A method for detecting stick-slip in a drillstring includes (a) measuring a parameter that is a function of a torque applied to the drillstring by a top drive system over a selected time period, the measuring being performed by at least one surface sensor that produces measurement data including torque values over a frequency range; (b) filtering out measurement data that has a frequency outside a selected frequency band, the selected frequency band including a resonant frequency of the drillstring; (c) identifying a minimum and a maximum torque value in the filtered measurement data and determining a difference of these two values; (d) determining a surface stick-slip index by dividing the difference of the maximum and minimum torque values by an average torque value over the selected time period; and (e) displaying the surface stick-slip index on a display.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 21, 2018
    Assignee: Pason Systems Corp.
    Inventors: Stephen William Lai, Christopher Darren Salvador, Kenneth Charles Horovatin, Timothy Keith Walter
  • Publication number: 20160076354
    Abstract: A method for detecting stick-slip in a drillstring includes (a) measuring a parameter that is a function of a torque applied to the drillstring by a top drive system over a selected time period, the measuring being performed by at least one surface sensor that produces measurement data including torque values over a frequency range; (b) filtering out measurement data that has a frequency outside a selected frequency band, the selected frequency band including a resonant frequency of the drillstring; (c) identifying a minimum and a maximum torque value in the filtered measurement data and determining a difference of these two values; (d) determining a surface stick-slip index by dividing the difference of the maximum and minimum torque values by an average torque value over the selected time period; and (e) displaying the surface stick-slip index on a display.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 17, 2016
    Inventors: STEPHEN WILLIAM LAI, CHRISTOPHER DARREN SALVADOR, KENNETH CHARLES HOROVATIN, TIMOTHY KEITH WALTER
  • Patent number: 8861574
    Abstract: A system and method is presented where a low-IF architecture can be used to allow existing wireless standards to be used for joint wireless/power-line channel transmission in the provision of diversity communications channels. Diversity combining of wireless and power-line channels can be employed, wherein the input noise to the maximum-likelihood detector can be Class A-distributed. For uncoded BPSK, the BER can be a function of PLC impulsiveness and can improve wireless-only BER by orders of magnitude when PLC SNR >10 dB. The error performance can be equivalent to BER of the static PLC channel for low wireless SNR and can improve with a slope of ?1 at high wireless SNRs. The inflection point between these two regions can occur at approximately 0 dB when PLC noise is Gaussian, and increases above 20 dB as the noise becomes more impulsive.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: October 14, 2014
    Assignee: Telecommunications Research Laboratories
    Inventors: Stephen William Lai, Geoffrey G. Messier
  • Publication number: 20130070821
    Abstract: A system and method is presented where a low-IF architecture can be used to allow existing wireless standards to be used for joint wireless/power-line channel transmission in the provision of diversity communications channels. Diversity combining of wireless and power-line channels can be employed, wherein the input noise to the maximum-likelihood detector can be Class A-distributed. For uncoded BPSK, the BER can be a function of PLC impulsiveness and can improve wireless-only BER by orders of magnitude when PLC SNR >10 dB. The error performance can be equivalent to BER of the static PLC channel for low wireless SNR and can improve with a slope of ?1 at high wireless SNRs. The inflection point between these two regions can occur at approximately 0 dB when PLC noise is Gaussian, and increases above 20 dB as the noise becomes more impulsive.
    Type: Application
    Filed: May 20, 2011
    Publication date: March 21, 2013
    Inventors: Stephen William Lai, Geoffrey G. Messier