Patents by Inventor Stephen Yamartino

Stephen Yamartino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130167588
    Abstract: A sheet wafer furnace has a chamber having an opening, and a crucible, within the chamber, and spaced from the opening. The furnace also has a puller configured to pull a sheet wafer from molten material in the crucible and through the opening in the chamber, and a seal across the opening of the chamber.
    Type: Application
    Filed: August 9, 2012
    Publication date: July 4, 2013
    Inventors: Steven Sherman, Leo van Glabbeek, Stephen Yamartino
  • Publication number: 20120211917
    Abstract: A method of forming a sheet wafer 1) passes at least two filaments through a molten material to produce a partially formed sheet wafer, 2) directs a cooling fluid at a flow rate toward the partially formed sheet wafer to convectively cool a given portion of the partially formed sheet wafer, and 3) monitors the thickness of the given portion of the partially formed sheet wafer. To ensure appropriate thicknesses of the wafer, the method controls the flow rate of the cooling fluid as a function of the thickness of the given portion of the partially formed sheet wafer.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 23, 2012
    Applicant: EVERGREEN SOLAR, INC.
    Inventors: Leo van Glabbeek, Lianghong Liu, Weidong Huang, David Hitchcock, Stephen Yamartino
  • Publication number: 20120164379
    Abstract: A sheet wafer has a generally flat, generally rectangular shaped body with a length and a width, and first and second filaments generally perpendicular to the width of the body. The first and second filaments are at least partially encapsulated by a wafer material and, together with the wafer material, form at least a portion of the body. The width is between about 145 mm and 165 mm.
    Type: Application
    Filed: January 27, 2011
    Publication date: June 28, 2012
    Applicant: Evergreen Solar, Inc.
    Inventors: Steven Sherman, Leo van Glabbeek, Weidong Huang, Stephen Yamartino, Kaitlin Olsen
  • Publication number: 20120131957
    Abstract: A method and apparatus for forming a sheet wafer melts feedstock material in a crucible that is part of a crystal growth furnace, passes a plurality of filaments through the crucible to form a sheet wafer, and cuts a portion of the sheet wafer to form a smaller sheet wafer. The method and apparatus then determine the weight of the smaller sheet wafer, and control the temperature of the melted feedstock material (e.g., by controlling crucible temperature or by interfacing with another temperature control system) as a function of the determined weight.
    Type: Application
    Filed: September 30, 2011
    Publication date: May 31, 2012
    Applicant: Max Era, Inc.
    Inventors: Leo van Glabbeek, Gerald A. Simpson, JR., Soumana Hamma, Stephen Yamartino
  • Publication number: 20120131766
    Abstract: A method of forming a sheet wafer melts feedstock material in a crucible that is part of a crystal growth furnace, and passes a plurality of filaments through the crucible to form a (un-separated) sheet wafers. A plurality of sheet wafers may be formed in different lanes in the crucible. One or more vision systems is used, during growth, to determine if a sheet wafer has a defective condition. If a defect is detected, then any of a variety of corrective actions may be taken, such as activating a cutting device to remove at least a portion of the sheet wafer, assessing the defect and grading a portion of the sheet wafer (e.g., for sorting based on grade), and/or producing an indicia. In a multiple-lane embodiment, a defect may be attended to in one lane while sheet growth continues in one or more other lanes.
    Type: Application
    Filed: September 30, 2011
    Publication date: May 31, 2012
    Applicant: Max Era, Inc.
    Inventors: Leo van Glabbeek, Gerald A. Simpson, JR., Soumana Hamma, Stephen Yamartino
  • Publication number: 20070000310
    Abstract: A leak detection system includes a trace gas leak detector having a wireless base unit, and a handheld wireless remote unit to generate an alphanumeric display of leak rate measured by the leak detector, in response to leak detector information received by wireless link from the leak detector. The remote unit may include a wireless transceiver to communicate with the wireless base unit of the leak detector, a display unit and a controller, responsive to the received leak detector information, to generate the display on the display unit. The remote unit may be configured to control the leak detector and may be configured to display a leak detector operating mode.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventors: Stephen Yamartino, Daniel Geist, Joseph Klebanov