Patents by Inventor Sterling Whitaker

Sterling Whitaker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11626403
    Abstract: A SEU tolerant structure has two logic sections that generate two output signals that are complementary such that a fault which affects one section cannot affect the other section. Adjacent NMOS regions or adjacent PMOS regions contain no logic inversions in the combinational logic or if logic inversions in the combinational logic are present where all gates following the inversion are SEU hard by design. The circuits can be realized using one of a Complex CMOS gate, pass transistor logic, Multiplexor logic, AND-OR logic or OR-AND logic.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: April 11, 2023
    Assignee: ICs LLC
    Inventors: Sterling Whitaker, Gary Maki
  • Patent number: 11552079
    Abstract: A SEU tolerant structure has two logic sections that generate two output signals that are complementary such that a fault which affects one section cannot affect the other section. Adjacent NMOS regions or adjacent PMOS regions contain no logic inversions in the combinational logic or if logic inversions in the combinational logic are present where all gates following the inversion are SEU hard by design. The circuits can be realized using one of a Complex CMOS gate, pass transistor logic, Multiplexor logic, AND-OR logic or OR-AND logic.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: January 10, 2023
    Assignee: ICs LLC
    Inventors: Sterling Whitaker, Gary Maki
  • Publication number: 20210272953
    Abstract: A SEU tolerant structure has two logic sections that generate two output signals that are complementary such that a fault which affects one section cannot affect the other section. Adjacent NMOS regions or adjacent PMOS regions contain no logic inversions in the combinational logic or if logic inversions in the combinational logic are present where all gates following the inversion are SEU hard by design. The circuits can be realized using one of a Complex CMOS gate, pass transistor logic, Multiplexor logic, AND-OR logic or OR-AND logic.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Applicant: ICs LLC
    Inventors: Sterling Whitaker, Gary Maki
  • Publication number: 20210272954
    Abstract: A SEU tolerant structure has two logic sections that generate two output signals that are complementary such that a fault which affects one section cannot affect the other section. Adjacent NMOS regions or adjacent PMOS regions contain no logic inversions in the combinational logic or if logic inversions in the combinational logic are present where all gates following the inversion are SEU hard by design. The circuits can be realized using one of a Complex CMOS gate, pass transistor logic, Multiplexor logic, AND-OR logic or OR-AND logic.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Inventors: Sterling Whitaker, Gary Maki
  • Patent number: 11069683
    Abstract: A SEU tolerant structure has two logic sections that generate two output signals that are complementary such that a fault which affects one section cannot affect the other section. Adjacent NMOS regions or adjacent PMOS regions contain no logic inversions in the combinational logic or if logic inversions in the combinational logic are present where all gates following the inversion are SEU hard by design. The circuits can be realized using one of a Complex CMOS gate, pass transistor logic, Multiplexor logic, AND-OR logic or OR-AND logic.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 20, 2021
    Assignee: ICs LLC
    Inventors: Sterling Whitaker, Gary Maki
  • Publication number: 20200111786
    Abstract: A SEU tolerant structure has two logic sections that generate two output signals that are complementary such that a fault which affects one section cannot affect the other section. Adjacent NMOS regions or adjacent PMOS regions contain no logic inversions in the combinational logic or if logic inversions in the combinational logic are present where all gates following the inversion are SEU hard by design. The circuits can be realized using one of a Complex CMOS gate, pass transistor logic, Multiplexor logic, AND-OR logic or OR-AND logic.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 9, 2020
    Inventors: Sterling Whitaker, Gary Maki
  • Patent number: 7576562
    Abstract: A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: August 18, 2009
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Sterling Whitaker, Lowell Miles, Jody Gambles, Gary K. Maki
  • Patent number: 7543212
    Abstract: The encoder chip of the present invention uses LDPC codes to encode input message data at a transmitting end, thereby generating a series of codewords. The encoder chip implements two low-density parity-check (LDPC) codes. The first LDPC code is a (4088,3360) code (4K) which is shortened from a (4095,3367) cyclic code. The second LDPC code is a quasi-cyclic (8158,7136) code (8K). The message data and the generated codewords are transmitted to a receiving end where the received codewords are decoded and checked for errors. To generate the codewords, the encoder applies a generator matrix G to the input message data. The G matrix is generated by first defining an H matrix. An H matrix is initially defined as 16×2 array of right-circulant sub-matrices. The G matrix is formed by manipulating the H matrix according to a 4-step algorithm. A randomizer and a synchronization marker are also included within the encoder.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: June 2, 2009
    Inventors: Lowell Miles, Sterling Whitaker
  • Publication number: 20090089642
    Abstract: The encoder chip of the present invention uses LDPC codes to encode input message data at a transmitting end, thereby generating a series of codewords. The encoder chip implements two low-density parity-check (LDPC) codes. The first LDPC code is a (4088,3360) code (4K) which is shortened from a (4095,3367) cyclic code. The second LDPC code is a quasi-cyclic (8158,7136) code (8K). The message data and the generated codewords are transmitted to a receiving end where the received codewords are decoded and checked for errors. To generate the codewords, the encoder applies a generator matrix G to the input message data. The G matrix is generated by first defining an H matrix. An H matrix is initially defined as 16×2 array of right-circulant sub-matrices. The G matrix is formed by manipulating the H matrix according to a 4-step algorithm. A randomizer and a synchronization marker are also included within the encoder.
    Type: Application
    Filed: September 13, 2005
    Publication date: April 2, 2009
    Inventors: Lowell Miles, Sterling Whitaker
  • Patent number: 7489538
    Abstract: A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: February 10, 2009
    Assignee: University of Idaho
    Inventors: Gary R. Maki, Jody W. Gambles, Sterling Whitaker
  • Publication number: 20070109865
    Abstract: A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine.
    Type: Application
    Filed: September 25, 2006
    Publication date: May 17, 2007
    Inventors: Gary Maki, Jody Gambles, Sterling Whitaker
  • Publication number: 20060114135
    Abstract: An application specific integrated circuit is optimized by translating a first representation of its digital design to a second representation. The second representation includes multiple syntactic expressions that admit a representation of a higher-order function of base Boolean values. The syntactic expressions are manipulated to form a third representation of the digital design.
    Type: Application
    Filed: November 4, 2005
    Publication date: June 1, 2006
    Applicant: Science & Technology Corporation @ UNM
    Inventors: Sterling Whitaker, Lowell Miles
  • Patent number: 6434037
    Abstract: A high-speed, ultra-dense, via contact programmable ROM based on multiplexor cells is presented. High density is achieved by fully encoding n-bits of address space and programming the core with 2n bits of information per contact through the use of higher order logic techniques. Subfunction encoding is used to make substantial improvement to the area required for ROM structures. The programming is accomplished using via contacts between the top two metal layers. No transistors are used in the programmed core for the ROM, reducing the bit line load and helping to maintain a high level of performance.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: August 13, 2002
    Assignee: University of New Mexico
    Inventor: Sterling Whitaker
  • Patent number: 5406513
    Abstract: A CMOS circuit formed in a semiconductor substrate having improved immunity to radiation induced latch-up and improved immunity to a single event upset. The circuit architecture of the present invention can be utilized with N-Well, P-Well and dual Well processes. For example, the circuit is described relative to an N-Well process. An N-Well is formed in a p-type substrate. A network of p-channel transistors are formed in the N-Well and a network of n-channel transistors are formed in the p-type substrate. A continuous P+guard ring is formed surrounding the n-channel transistors and between the n-channel transistors and the N-Well. Similarly, a continuous N+guard ring is formed surrounding the p-channel transistors and between the p-channel transistors and the p-type substrate. In the event of a radiation hit, the guard rings operate to reduce the parasitic impedance in the collector circuits of the parasitic bipolars forming a parasitic SCR and also act as additional collectors of radiation induced current.
    Type: Grant
    Filed: February 5, 1993
    Date of Patent: April 11, 1995
    Assignee: The University of New Mexico
    Inventors: John Canaris, Sterling Whitaker, Kelly Cameron
  • Patent number: 4566064
    Abstract: PASS transistors are used to reduce the layout complexity of logic circuits by using PASS transistors connected to pass a first and second input function to an output node in response to selected CONTROL signals, thereby to generate a selected output function on the output node. The PASS transistor comprises a transistor capable of passing an input function in response to a CONTROL signal applied to the transistor thereby to generate an output function related to the input function. In general, the input function comprises less than all of a set of input variables and the CONTROL function comprises one or more of the remainder of the set of input variables.
    Type: Grant
    Filed: December 8, 1982
    Date of Patent: January 21, 1986
    Assignee: American Microsystems, Inc.
    Inventor: Sterling Whitaker