Patents by Inventor Stevan R. Horning

Stevan R. Horning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210407783
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Patent number: 11133162
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: September 28, 2021
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Stevan R. Horning
  • Publication number: 20200335317
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 22, 2020
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Patent number: 10755908
    Abstract: A system and method of mass spectrometry is provided. Ions from an ion source are stored in a first ion storage device and in a second ion storage device. Ions are ejected from the first ion storage device to a first mass analysis device during a first ejection time period, for analysis during a first analysis time period. Ions are ejected from the second ion storage device to a second mass analysis device during a second ejection time period. The ion storage devices are connected in series such that an ion transport aperture of the first ion storage device is in communication with an ion transport aperture of the second ion storage device. The first analysis time period and the second ejection time period at least partly overlap.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 25, 2020
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Stevan R. Horning
  • Patent number: 10748755
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2? radians over an ion detection period Tm.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: August 18, 2020
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning
  • Patent number: 10714322
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: July 14, 2020
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Stevan R. Horning
  • Publication number: 20200013604
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Patent number: 10446380
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionized solvent and solvent ion vapors. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionized solvent vapors are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 15, 2019
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Stevan R. Horning
  • Publication number: 20190221410
    Abstract: A system and method of mass spectrometry is provided. Ions from an ion source are stored in a first ion storage device and in a second ion storage device. Ions are ejected from the first ion storage device to a first mass analysis device during a first ejection time period, for analysis during a first analysis time period. Ions are ejected from the second ion storage device to a second mass analysis device during a second ejection time period. The ion storage devices are connected in series such that an ion transport aperture of the first ion storage device is in communication with an ion transport aperture of the second ion storage device. The first analysis time period and the second ejection time period at least partly overlap.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Publication number: 20190164740
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2? radians over an ion detection period Tm.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: Alexander A. MAKAROV, Eduard V. DENISOV, Gerhard JUNG, Wilko BALSCHUN, Stevan R. HORNING
  • Patent number: 10242860
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: March 26, 2019
    Assignee: Thermo Fisher Scientifc (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning
  • Publication number: 20190013193
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 10, 2019
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Patent number: 10090140
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionized solvent and solvent ion vapors. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionized solvent vapors are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: October 2, 2018
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Stevan R. Horning
  • Publication number: 20170200596
    Abstract: A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionised solvent and solvent ion vapours. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionised solvent vapours are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 13, 2017
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Publication number: 20170117130
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Alexander A. MAKAROV, Eduard V. DENISOV, Gerhard JUNG, Wilko BALSCHUN, Stevan R. HORNING
  • Patent number: 9570283
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: February 14, 2017
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning
  • Patent number: 9536717
    Abstract: This invention relates to mass spectrometry that includes ion trapping in at least one of the stages of mass analysis. In particular, although not exclusively, this invention relates to tandem mass spectrometry where precursor ions and fragment ions are analyzed. A method of mass spectrometry is provided comprising the sequential steps of: accumulating in an ion store a sample of one type of ions to be analyzed; accumulating in the ion store a sample of another type of ions to be analyzed; and mass analyzing the combined samples of the ions; wherein the method comprises accumulating the sample of the one type of ions and/or the sample of another type of ions to achieve a target number of ions based on the results of a previous measurement of the respective type of ions.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: January 3, 2017
    Assignee: Thermo Finnigan LLC
    Inventors: Alexander A. Makarov, Oliver Lange, Stevan R. Horning
  • Publication number: 20150364316
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 17, 2015
    Inventors: Alexander A. MAKAROV, Eduard V. DENISOV, Gerhard JUNG, Wilko BALSCHUN, Stevan R. HORNING
  • Publication number: 20150279641
    Abstract: A system and method of mass spectrometry is provided. Ions from an ion source are stored in a first ion storage device and in a second ion storage device. Ions are ejected from the first ion storage device to a first mass analysis device during a first ejection time period, for analysis during a first analysis time period. Ions are ejected from the second ion storage device to a second mass analysis device during a second ejection time period. The ion storage devices are connected in series such that an ion transport aperture of the first ion storage device is in communication with an ion transport aperture of the second ion storage device. The first analysis time period and the second ejection time period at least partly overlap.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Inventors: Alexander A. MAKAROV, Stevan R. HORNING
  • Patent number: 9117647
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U?(r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: August 25, 2015
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning