Patents by Inventor Steve L. Allman

Steve L. Allman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10179180
    Abstract: The invention relates in various embodiments to a composite useful as e.g. a medical implant device, and a method of treating fouling, including biofouling as may occur on an implant. The composite comprises a matrix phase and a patterned phase that comprises an energetically activatable wire intermixed with the matrix phase, the wire when energetically activated, which includes thermal activation, causes modification of at least a portion of the matrix phase to treat fouling that might otherwise occur. The method of treating biofouling may be practiced on a patent while the medical implant of the invention is in situ.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: January 15, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Steve L. Allman, Mitchel J Doktycz, Scott T Retterer, David P. Allison
  • Publication number: 20150044092
    Abstract: The invention relates in various embodiments to a composite useful as e.g. a medical implant device, and a method of treating fouling, including biofouling as may occur on an implant. The composite comprises a matrix phase and a patterned phase that comprises an energetically activatable wire intermixed with the matrix phase, the wire when energetically activated, which includes thermal activation, causes modification of at least a portion of the matrix phase to treat fouling that might otherwise occur. The method of treating biofouling may be practiced on a patent while the medical implant of the invention is in situ.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 12, 2015
    Inventors: Steve L. ALLMAN, Mitchel J. DOKTYCZ, Scott T. RETTERER, David P. ALLISON
  • Patent number: 8771402
    Abstract: A vapor particle separator including a temperature controlled chamber for desorbing vapors from the particulates of an exhaust gas and a separation chamber including a micro porous membrane. The micro porous membrane provides an interface between at least one particle passageway and at least one vapor passageway through the separation chamber. The particle passageway extends from an entrance to the separation chamber to a particle exit from the separation chamber. The vapor passageway extends from the micro-porous membrane to a vapor exit from the separation chamber that is separate from the particle exit from the separation chamber.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: July 8, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Meng-Dawn Cheng, Steve L. Allman
  • Publication number: 20130186269
    Abstract: A vapor particle separator including a temperature controlled chamber for desorbing vapors from the particulates of an exhaust gas and a separation chamber including a micro porous membrane. The micro porous membrane provides an interface between at least one particle passageway and at least one vapor passageway through the separation chamber. The particle passageway extends from an entrance to the separation chamber to a particle exit from the separation chamber. The vapor passageway extends from the micro-porous membrane to a vapor exit from the separation chamber that is separate from the particle exit from the separation chamber.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 25, 2013
    Applicant: UT-BATTELLE, LLC
    Inventors: Meng-Dawn Cheng, Steve L. Allman
  • Patent number: 5293130
    Abstract: Apparatus for detecting an electronegative species comprises an analysis chamber, an inlet communicating with the analysis chamber for admitting a sample containing the electronegative species and an ionizable component, a radioactive source within the analysis chamber for emitting radioactive energy for ionizing a component of the sample, a proportional electron detector within the analysis chamber for detecting electrons emitted from the ionized component, and a circuit for measuring the electrons and determining the presence of the electronegative species by detecting a reduction in the number of available electrons due to capture of electrons by the electronegative species.
    Type: Grant
    Filed: July 2, 1991
    Date of Patent: March 8, 1994
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Steve L. Allman, Fang C. Chen, Chung-Hsuan Chen
  • Patent number: 5184015
    Abstract: A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.
    Type: Grant
    Filed: September 27, 1991
    Date of Patent: February 2, 1993
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Steve L. Allman, Chung-Hsuan Chen, Fang C. Chen
  • Patent number: 4658135
    Abstract: Method and apparatus for determining small quantities of specific atoms with isotopic selectivity. According to the method described herein, atoms are rapidly released from an atom bank containing the same, and are then converted to ions utilizing resonance ionization as achieved with photon beams having specific wave lengths. These ions are extracted from the ionization region and are accelerated and implanted into a second atom bank. For further selectivity, the atoms are then rapidly released from the second bank, ionized with another photon beam of selected wave length to provide ionization of the desired species, with these ions then being extracted, subjected to acceleration, and implanted into the first atom bank. Typically the number of electrons emitted from the atom banks during implantation is used as a measure of the number of atoms of the selected species.
    Type: Grant
    Filed: September 16, 1985
    Date of Patent: April 14, 1987
    Assignee: Atom Sciences, Inc.
    Inventors: Steve L. Allman, Norbert Thonnard, George S. Hurst