Patents by Inventor Steven A. Sundberg

Steven A. Sundberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7364705
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 29, 2008
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y. H. Chow
  • Patent number: 7364706
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 29, 2008
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y. H. Chow
  • Patent number: 7364704
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: April 29, 2008
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y. H. Chow
  • Patent number: 7316801
    Abstract: The invention provides improved systems, devices, and methods for analyzing a large number of sample compounds contained in standard multi-well microtiter plates or other array structures. The multi-well plates travel along a conveyor system to a test station having a microfluidic device. At the test station, each plate is removed from the conveyor and the wells of the multi-well plate are sequentially aligned with an input port of the microfluidic device. After at least a portion of each sample has been input into the microfluidic channel system, the plate is returned to the conveyor system. Pre and/or post testing stations may be disposed along the conveyor system, and the use of an X-Y-Z robotic arm and novel plate support bracket allows each of the samples in the wells to be input into the microfluidic network through a probe affixed to a microfluidic chip.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: January 8, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Joseph E. Kercso, Steven A. Sundberg, Jeffrey A. Wolk, Andrew W. Toth, Calvin Y. H. Chow, J. Wallace Parce
  • Patent number: 7259020
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: August 21, 2007
    Assignee: Applera Corporation
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y. H. Chow
  • Publication number: 20070119711
    Abstract: Methods and systems for use in separating sample materials into different fractions employing pressure-based fluid flow for simultaneous loading of a sample and a reagent into a sample loading channel of a microfluidic device. The sample is loaded from an external source through an attached external sampling capillary. The reagent, which may be a molecular weight standard, a diluent, a detergent, or a labeling reagent, is loaded from a reservoir integral to the microfluidic device via a reagent introduction channel within the device. The sample and reagent form a mixture in the sample loading channel. A portion of the mixture is electrokinetically injected from the sample loading channel, via an injection channel, into a separation channel, where it is separated electrophoretically.
    Type: Application
    Filed: January 25, 2007
    Publication date: May 31, 2007
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Walter Ausserer, Luc Bousse, Robert Dubrow, Steven Sundberg, Andrea Chow, Benjiamin Wang
  • Publication number: 20070110633
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: December 29, 2006
    Publication date: May 17, 2007
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20070102295
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: December 29, 2006
    Publication date: May 10, 2007
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20070102296
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: December 29, 2006
    Publication date: May 10, 2007
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20070102297
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: December 29, 2006
    Publication date: May 10, 2007
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20070092400
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: December 29, 2006
    Publication date: April 26, 2007
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20070026421
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Application
    Filed: February 9, 2006
    Publication date: February 1, 2007
    Applicants: Caliper Life Sciences, Inc., Canon U.S. Life Sciences, Inc.
    Inventors: Steven Sundberg, Michael Knapp, Ivor Knight, Deborah Boles, Aaron Rulison, Wesley Dong, Edward Donlon, Robert Moti, Andrew Fabans, Allen Boronkay, Michael Slater
  • Patent number: 7169277
    Abstract: Devices, systems and methods for use in separating sample materials into different fractions that employ bulk fluid flow for loading of samples followed by electrophoretic separation of the sample material. Devices employ configurations that optionally allow bulk sample loading with some or no displacement of a separation matrix within a separation conduit. Methods of using these devices, and systems that incorporate these devices are also envisioned.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: January 30, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Walter Ausserer, Luc J. Bousse, Robert S. Dubrow, Steven A. Sundberg, Andrea W. Chow, Benjamin N. Wang
  • Publication number: 20060286001
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: July 27, 2006
    Publication date: December 21, 2006
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20060286000
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: July 27, 2006
    Publication date: December 21, 2006
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20060286002
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: July 27, 2006
    Publication date: December 21, 2006
    Inventors: Steven Sundberg, J. Parce, Calvin Chow
  • Publication number: 20050202470
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing binding assays through construction of molecular melt curves. In particular, the devices and methods of the invention are useful in screening large numbers of different test molecules for their binding ability to target molecules.
    Type: Application
    Filed: January 11, 2005
    Publication date: September 15, 2005
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Steven Sundberg, Michael Knapp
  • Publication number: 20050153459
    Abstract: Flow rates in a microfluidic device are modulated after performing serial dilutions by flow reduction channels that draw fluid from the main channel, thus reducing the flow rate. The reduction in flow rate and/or use of smaller dimension channels allow reduced reagent consumption. In addition, multiple flow reduction channels are used for multiple concentration measurements and for performing multiple assays simultaneously on a single sample. Also included are microfluidic devices and integrated systems for performing assays using serial dilutions, single pressure sources, multiple concentration measurements, and reduced reagent consumption. Devices comprising flow reduction channels are also used to suppress pressure perturbations from spontaneous injection.
    Type: Application
    Filed: December 6, 2004
    Publication date: July 14, 2005
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Anne Kopf-Sill, Steven Sundberg, Andrea Chow, Claudia Poglitsch
  • Publication number: 20050084612
    Abstract: Hydrophilic protein adsorption resistant coatings for microfluidic devices are provided. Additionally, microfluidic devices and methods of manufacturing microfluidic devices that include the coatings are provided.
    Type: Application
    Filed: December 6, 2004
    Publication date: April 21, 2005
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Hua Yang, Steven Sundberg
  • Patent number: 6858185
    Abstract: Flow rates in a microfluidic device are modulated after performing serial dilutions by flow reduction channels that draw fluid from the main channel, thus reducing the flow rate. The reduction in flow rate and/or use of smaller dimension channels allow reduced reagent consumption. In addition, multiple flow reduction channels are used for multiple concentration measurements and for performing multiple assays simultaneously on a single sample. Also included are microfluidic devices and integrated systems for performing assays using serial dilutions, single pressure sources, multiple concentration measurements, and reduced reagent consumption. Devices comprising flow reduction channels are also used to suppress pressure perturbations from spontaneous injection.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: February 22, 2005
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Anne R. Kopf-Sill, Steven A. Sundberg, Andrea W. Chow, Claudia L. Poglitsch