Patents by Inventor Steven Apperson

Steven Apperson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130000800
    Abstract: The invention provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles are introduced into the metal oxide nanostructure via wet impregnation.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Daniel Tappmeyer, Andrey Bezmelnystin, Rajagopalan Thiruvengadathan, Rajesh Shende, Bhushan Mehendale, Steven Apperson, Syed Barizuddin, Keshab Gangopadhyay
  • Patent number: 8293040
    Abstract: The invention provides homogeneous mesoporous metal oxide nanoenergetic composites. A composite of the invention has a regular and uniform nanostructure of metal oxide, which is structured by a surfactant. Metal fuel nanoparticles are homogenously distributed through the regular and uniform nanostructure. The invention further provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles into the metal oxide nanostructure via wet impregnation.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 23, 2012
    Assignee: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Daniel Tappmeyer, Andrey Bezmelnytsin, Rajagopalan Thiruvengadathan, Rajesh Shende, Bhusban Mehendale, Steven Apperson, Syed Barizuddin, Keshab Gangopadhyay
  • Patent number: 8066831
    Abstract: A method of generating power uses a nanoenergetic material. The nanoenergetic material comprising thermite is obtained and deposited on a substrate. An igniter is placed on the nanoenergetic material. When power is desired, the nanoenergetic material is ignited. A transducer receives thermal, sonic, magnetic, optic and/or mechanical energy from combustion of the nanoenergetic material and converts it into electrical energy. Preferably, the transducer is a thermoelectric, piezoelectric or magneto device. Preferably, multiple transducers are integrated in one power generators to maximize the power from nanoenergetic thermites.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: November 29, 2011
    Assignee: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Steven Apperson, Keshab Gangopadhyay, Andrey Bezmelnitsyn, Rajagopalan Thiruvengadathan, Michael Kraus, Rajesh Shende, Maruf Hossain, Senthil Subramanian, Shantanu Bhattacharya, Yuangang Gao
  • Publication number: 20100279102
    Abstract: The invention provides homogeneous mesoporous metal oxide nanoenergetic composites. A composite of the invention has a regular and uniform nanostructure of metal oxide, which is structured by a surfactant. Metal fuel nanoparticles are homogenously distributed through the regular and uniform nanostructure. The invention further provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles into the metal oxide nanostructure via wet impregnation.
    Type: Application
    Filed: December 11, 2007
    Publication date: November 4, 2010
    Inventors: Shubhra Gangopadhyay, Daniel Tappmeyer, Andrey Bezmelnytsin, Rajagopalan Thiruvengadathan, Rajesh Shende, Bhusban Mehendale, Steven Apperson, Syed Barizuddin, Keshab Gangopadhyay
  • Publication number: 20090152873
    Abstract: A method of generating power uses a nanoenergetic material. The nanoenergetic material comprising thermite is obtained and deposited on a substrate. An igniter is placed on the nanoenergetic material. When power is desired, the nanoenergetic material is ignited. A transducer receives thermal, sonic, magnetic, optic and/or mechanical energy from combustion of the nanoenergetic material and converts it into electrical energy. Preferably, the transducer is a thermoelectric, piezoelectric or magneto device. Preferably, multiple transducers are integrated in one power generators to maximize the power from nanoenergetic thermites.
    Type: Application
    Filed: October 27, 2006
    Publication date: June 18, 2009
    Inventors: Shubhra Gangopadhyay, Steven Apperson, Keshab Gangopadhyay, Andrey Bezmelnitsyn, Rajagopalan Thiruvengadathan, Michael Kraus, Rajesh Shende, Maruf Hossain, Senthil Subramanian, Shantanu Bhattacharya, Yuangang Gao
  • Publication number: 20080152899
    Abstract: The invention provides metastable intermolecular composites that have good thermite properties while also being relatively insensitive to electrostatic discharge ignition. A preferred embodiment metastable intermolecular composite has a metal oxide nanostructure, which can be coated with an energetic polymer via a molecular linker or loaded with a gas generating polymer. Metal fuel nanoparticles coated with an energetic polymer via a molecular linker are closely associated with said metal oxide nanostructure. Methods of making metastable intermolecular composites are also provided by the invention.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 26, 2008
    Inventors: Shubhra Gangopadhyah, Rajagopalan Thiruvengadathan, Andrey Bezmelnytsin, Steven Apperson, Keshab Gangopadhyay