Patents by Inventor Steven C. George

Steven C. George has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898129
    Abstract: A pressure regulator module for a chip-based microfluidic platform is provided. The module includes a microfluidic channel for passing flowable material from the inlet region through the outlet region and into a downstream compartment; one or more microvalves fluidly connected to the microfluidic channel and upstream of the outlet region; and one or more reservoirs fluidly connected to the microvalves, for receiving flowable material diverted by the microvalves, where a flow of flowable material passing from the inlet region toward the downstream compartment is at least partially diverted by the microvalves into the reservoirs as a result of a pressure increase in the microfluidic channel. In some versions, the microvalves are capillary burst valves. A microfluidic chip containing the module and a method of using the module are provided.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of California
    Inventors: Abraham P. Lee, Xiaolin Wang, Duc Phan, Christopher C. W. Hughes, Steven C. George
  • Publication number: 20220025312
    Abstract: A pressure regulator module for a chip-based microfluidic platform is provided. The module includes a microfluidic channel for passing flowable material from the inlet region through the outlet region and into a downstream compartment; one or more microvalves fluidly connected to the microfluidic channel and upstream of the outlet region; and one or more reservoirs fluidly connected to the microvalves, for receiving flowable material diverted by the microvalves, where a flow of flowable material passing from the inlet region toward the downstream compartment is at least partially diverted by the microvalves into the reservoirs as a result of a pressure increase in the microfluidic channel. In some versions, the microvalves are capillary burst valves. A microfluidic chip containing the module and a method of using the module are provided.
    Type: Application
    Filed: October 1, 2021
    Publication date: January 27, 2022
    Applicant: The Regents of the University of California
    Inventors: Abraham P. Lee, Xiaolin Wang, Duc Phan, Christopher C.W. Hughes, Steven C. George
  • Patent number: 11180724
    Abstract: A pressure regulator module for a chip-based microfluidic platform is provided. The module includes a microfluidic channel for passing flowable material from the inlet region through the outlet region and into a downstream compartment; one or more microvalves fluidly connected to the microfluidic channel and upstream of the outlet region; and one or more reservoirs fluidly connected to the microvalves, for receiving flowable material diverted by the microvalves, where a flow of flowable material passing from the inlet region toward the downstream compartment is at least partially diverted by the microvalves into the reservoirs as a result of a pressure increase in the microfluidic channel. In some versions, the microvalves are capillary burst valves. A microfluidic chip containing the module and a method of using the module are provided.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 23, 2021
    Assignee: The Regents of the University of California
    Inventors: Abraham P. Lee, Xiaolin Wang, Duc Phan, Christopher C. W. Hughes, Steven C. George
  • Patent number: 9810685
    Abstract: Provided is a process for creating a 3D metabolically active microtissue perfused with living microvessels which have a direct fluidic connection with neighboring microfluidic channels. The process comprises preparing a template comprising a plurality of channels, and creating a network within said channels, said network comprising microfluidic channels, metabolically active living microvessels, and microtissues. The microvessels can sprout from said microvessels and/or form within the microtissue in response to a stimulus applied from said microfluidic channels or stimulus derived from the said tissues. In another embodiment, a device is provided comprising a supportive structure, one or more microfluidic channels, one or more microtissue compartments, and one or more microvessels, whereby the microvessels connect said microfludic channels and microtissue and perfuse the microtissue to deliver fluid from the microfluidic channels to the microtissues.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 7, 2017
    Assignee: The Regents of the University of California
    Inventors: Steven C. George, Christopher C. W. Hughes, Abraham P. Lee, Monica Moya, Yu-Hsiang Hsu
  • Publication number: 20170130187
    Abstract: A pressure regulator module for a chip-based microfluidic platform is provided. The module includes a microfluidic channel for passing flowable material from the inlet region through the outlet region and into a downstream compartment; one or more microvalves fluidly connected to the microfluidic channel and upstream of the outlet region; and one or more reservoirs fluidly connected to the microvalves, for receiving flowable material diverted by the microvalves, where a flow of flowable material passing from the inlet region toward the downstream compartment is at least partially diverted by the microvalves into the reservoirs as a result of a pressure increase in the microfluidic channel. In some versions, the microvalves are capillary burst valves. A microfluidic chip containing the module and a method of using the module are provided.
    Type: Application
    Filed: October 24, 2016
    Publication date: May 11, 2017
    Inventors: Abraham P. Lee, Xiaolin Wang, Duc Phan, Christopher C.W. Hughes, Steven C. George
  • Publication number: 20160082236
    Abstract: Embodiments of the present disclosure relates to an implantable structure and a two stage method for cell and/or tissue transplantation. The implantable structure is configured to promote vascularization prior to cell and/or tissue transplantation, thereby allowing for implanted cells and/or tissues to have increased viability. In some embodiments, oxygen sensitive dyes can be used to determine levels of vascularization of the device.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Elliot L. Botvinick, Steven C. George, Bhupinder S. Shergill, Jonathan R. T. Lakey
  • Publication number: 20120083425
    Abstract: Provided is a process for creating a 3D metabolically active microtissue perfused with living microvessels which have a direct fluidic connection with neighboring microfluidic channels. The process comprises preparing a template comprising a plurality of channels, and creating a network within said channels, said network comprising microfluidic channels, metabolically active living microvessels, and microtissues. The microvessels can sprout from said microvessels and/or form within the microtissue in response to a stimulus applied from said microfluidic channels or stimulus derived from the said tissues. In another embodiment, a device is provided comprising a supportive structure, one or more microfluidic channels, one or more microtissue compartments, and one or more microvessels, whereby the microvessels connect said microfludic channels and microtissue and perfuse the microtissue to deliver fluid from the microfluidic channels to the microtissues.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 5, 2012
    Inventors: Steven C. George, Christopher C.W. Hughes, Abraham P. Lee, Monica Moya, Yu-Hsiang Hsu
  • Patent number: 7678062
    Abstract: Parametric characterization of nitric oxide (NO) gas exchange using a two-compartment model of the lungs is a non-invasive technique to characterize inflammatory lung diseases. The technique applies the two-compartment model to parametric characterization of NO gas exchange from a tidal breathing pattern. The model is used to estimate up to six flow-independent parameters, and to study alternate breathing patterns.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: March 16, 2010
    Assignee: The Regents of the University of California
    Inventors: Steven C. George, Peter Condorelli
  • Patent number: 7427269
    Abstract: An apparatus and method to characterize NO gas exchange dynamics in human lungs comprising the steps of: (1) performing a series of breath hold maneuvers of progressively increasingly breath hold times, each breath hold maneuver comprising a) inhaling a gas, b) holding a breath for a selected time duration, and c) exhaling at a flow rate which is uncontrolled but which is effective to ensure evacuation of the airway space and (2) measuring airway NO parameters during consecutive breath hold maneuvers. As a result disease states of the lungs are diagnosed using the measured airway NO parameters.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: September 23, 2008
    Assignee: The Regents of the University of California
    Inventors: Steven C. George, Hye-Won Shin, Peter Condorelli
  • Publication number: 20070282214
    Abstract: An apparatus and method to characterize NO gas exchange dynamics in human lungs, including performing a plurality of breathing maneuvers of substantially constant flow rates within a predetermined range, measuring data relating to at least one of an NO concentration and an NO elimination rate as a function of exhaled volume or exhalation flow rate, applying a lung model to the measured data, and obtaining at least one parameter indicative of disease states of the lung based on the lung model and the measured data, wherein the lung model, when applied in the predetermined range, predicts a substantially linear relationship between the NO elimination rate and the exhalation flow rate.
    Type: Application
    Filed: May 15, 2007
    Publication date: December 6, 2007
    Applicant: The Regents of the University of California
    Inventors: Steven C. George, Peter Condorelli, Hye-Won Shin
  • Patent number: 7156813
    Abstract: Parametric characterization of nitric oxide (NO) gas exchange using a two-compartment model of the lungs is a non-invasive technique to characterize inflammatory lung diseases. The technique applies the two-compartment model to parametric characterization of NO gas exchange from a tidal breathing pattern. The model is used to estimate up to six flow-independent parameters, and to study alternate breathing patterns.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: January 2, 2007
    Assignee: The Regents of the University of California
    Inventors: Steven C. George, Peter Condorelli
  • Patent number: 6866637
    Abstract: The invention provides an estimation of key flow-independent parameters characteristic of NO exchange in the lungs, namely: 1) the steady state alveolar concentration, Calv,ss; 2) the maximum flux of NO from the airways, JNO,max; and 3) the diffusing capacity of NO in the airways, DNO,air. The parameters were estimated from a single exhalation maneuver comprised of a pre-expiratory breathhold, followed by an exhalation in which the flow rate progressively decreased. The mean values for JNO,max, DNO,air, and Calv,ss do not depend on breathhold time for breathhold times greater than approximately 10 seconds. A priori estimates of the parameter confidence intervals demonstrates that a breathhold no longer than 20 seconds may be adequate, and that JNO,max be can estimated with the smallest uncertainty, and DNO,air the largest.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: March 15, 2005
    Assignee: The Regents of the University of California
    Inventors: Steven C. George, Nikolaos Tsoukias
  • Publication number: 20030229290
    Abstract: Parametric characterization of nitric oxide (NO) gas exchange using a two-compartment model of the lungs is a non-invasive technique to characterize inflammatory lung diseases. The technique applies the two-compartment model to parametric characterization of NO gas exchange from a tidal breathing pattern. The model is used to estimate up to six flow-independent parameters, and to study alternate breathing patterns.
    Type: Application
    Filed: February 5, 2003
    Publication date: December 11, 2003
    Inventors: Steven C. George, Peter Condorelli
  • Publication number: 20030208131
    Abstract: The invention provides an estimation of key flow-independent parameters characteristic of NO exchange in the lungs, namely: 1) the steady state alveolar concentration, Calv,ss; 2) the maximum flux of NO from the airways, JNO,max; and 3) the diffusing capacity of NO in the airways, DNO,air. The parameters were estimated from a single exhalation maneuver comprised of a pre-expiratory breathhold, followed by an exhalation in which the flow rate progressively decreased. The mean values for JNO,max, DNO,air, and Calv,ss do not depend on breathhold time for breathhold times greater than approximately 10 seconds. A priori estimates of the parameter confidence intervals demonstrates that a breathhold no longer than 20 seconds may be adequate, and that JNO,max be can estimated with the smallest uncertainty, and DNO,air the largest.
    Type: Application
    Filed: October 17, 2002
    Publication date: November 6, 2003
    Inventor: Steven C. George